
42nd Petrozavodsk Programming Camp and ICPC Training Camp
Day 7: Gennady Korotkevich Contest 6, Tuesday, February 8, 2022

Problem Tutorial: “Attack Order”
If n = 2, the answer is always “Yes”, because each minion buffs the other one, and we know their exact
attacks before the fight.

If n > 2, the minions should be sorted in non-increasing order of their initial attacks ai, and minions with
equal ai should be sorted in non-decreasing order of bi.

After sorting, if ai+
∑
j 6=i

bj > ai−1 for some i, the answer is “No”, because it could happen that every minion

buffs minion i, and minion i buffs a minion other than minion i− 1. Otherwise, the answer is “Yes”.

Problem Tutorial: “Browsing the Collection”
Since the current item always satisfies all the conditions in the set, the current state can always be
described with two integers (i,mask), where i is the current item and mask is the bitmask of the active
filtering conditions.

We can casework on the starting item and use BFS on these states. The “left” and “right” transitions can
be easily precomputed, the “remove” transition is simple, and the only non-trivial transition is “add”. You
could use bitset to optimize the transitions, or optimize your code in other ways, and get accepted if you
try hard enough.

However, the intended solution is to look at the process backwards, and make all transitions in reverse.
Instead of caseworking on the starting item, let’s casework on the finishing item and run BFS. The “left”
and “right” transitions have not changed. The “add” transition is simple — we add a filter and don’t move
the pointer. The “remove” transition is now the trickiest.

Let prev(i,mask) be the closest item to the left of item i with the same values as item i in parameters
mask. Suppose we are “removing” the filter on parameter j. Then we can make transitions to the following
states:

• (i,mask \ j);

• (prev(i,mask \ j),mask \ j);

• (prev(prev(i,mask \ j),mask \ j),mask \ j);

• ...

and so on, until we hit prev(i,mask). We can check that in each of the states above, normally, if we add
a filter on parameter j with the value ai,j , the pointer will move to item i.

It seems that we can still have O(n) transitions for each state, so how does this help? Let’s maintain a
disjoint-set union for each mask. In this DSU, item i will be the representative of its own set if and only
if (i,mask) is not visited by the BFS yet. Whenever a state (i,mask) is visited, we make a link from item
i to item prev(i,mask). This way, we can only traverse states that we are going to put into the queue
right now, spending O(log n) time per each. The overall complexity is O(n2 · 2m ·m · log n).

Problem Tutorial: “Casual Dancers”
Observation: max(a, b, c)−min(a, b, c) = 1

2(|a− b|+ |a− c|+ |b− c|).
Due to the linearity of expectation, to find the expected stretch, it’s enough to find the expected values
of distances between every pair of points.

For two points, let their coordinates be a and b, and consider the (signed) difference d = a− b. How does
it change after one second?

• With probability 1
3 , d doesn’t change (because the third point was chosen).

Page 1 of 6

42nd Petrozavodsk Programming Camp and ICPC Training Camp
Day 7: Gennady Korotkevich Contest 6, Tuesday, February 8, 2022

• With probability p
3 + 1−p

3 = 1
3 , d increases by 1 (with probability p

3 , a increases by 1, and with
probability 1−p

3 , b decreases by 1).

• With probability 1−p
3 + p

3 = 1
3 , d decreases by 1.

Let P (x) = 1
3(1 + x + x2), and consider P k(x). We can see that the i-th coefficient of P k(x) is the

probability that d increases by exactly i− k after k seconds. Thus, we can easily find the expected value
of |d| after k seconds.

If we use binary exponentiation and FFT, the overall time complexity is O(k log k).

An interesting observation is that the answer does not depend on p.

Problem Tutorial: “Diameter Two”
Let k > 0. Nodes from 1 to k must all be connected to the same node, otherwise the diameter will exceed
2. Let this node be k+1. Again, since the distance from node 1 to any node must not exceed 2, any node
from k+2 to n must be connected to node k+1. Thus, node k+1 has degree n− 1. What remains is to
add extra edges between nodes from k + 2 to n to increase their degrees. We can just connect k + 2 and
k + 3, k + 4 and k + 5, and so on, and if node n is left unpaired, connect it with n− 1.

This construction does not work when k = n (obviously it’s impossible to build the network then, since
n > 2) and when k = n− 2 (node n can only be connected to node n− 1, and there is no way to increase
node n’s degree; the answer is −1 in this case as well).

Let k = 0. It’s tempting to try the same: let node 1 have degree n− 1, and connect the remaining nodes
in pairs. Let’s try to prove this.

Let n = 2t+1 be odd (the case of even n is handled similarly). Then our construction method from above
forms t triangles and uses exactly 3t edges. Now let’s try to build a network with a smaller number of
edges, without nodes of degree n− 1.

Suppose there are no nodes of degree 2. Then all nodes have degree at least 3, and the number of edges
is at least 3n

2 = 3t+ 3
2 . This case is not interesting, because we’re trying to use strictly less than 3t edges.

Now suppose there is a node z of degree 2. Let its neighbors be x and y. Each of the remaining n−3 nodes
in the network must be connected to either x or y. Split these remaining nodes into two groups based on
this condition (if a node is connected to both x and y, send it to any group). Suppose there are a nodes
connected to node x, and b nodes connected to node y (not including z), where a+ b = n− 3 = 2t− 2.

As of now, we already have 2 + a + b = n − 1 = 2t edges. Moreover, since the remaining 2t − 2 nodes
all have degree 1 but need degree at least 2, we need to create at least

⌈
2t−2
2

⌉
= t − 1 new edges. Thus,

the smallest number of edges we will need is 3t − 1, which is strictly smaller than 3t. It means we can
potentially make a better network than we previously had, but only if we connect the remaining a + b
nodes in pairs. But can we do this?

Since we’re considering odd n, a+ b must be even. If a ≥ 2 and b ≥ 2, we can see that no matter how we
connect the vertices, some pair of vertices will end up at a distance greater than 2. The same happens if
a ≥ 1 and b ≥ 3. When a = 0, we’ve already lost because now we have an extra vertex of degree 1 which
we can not afford. The only remaining case is a = 1 and b = 1, but this case is actually important! It
turns out we can build a network on 5 nodes using only 5 edges (as opposed to 6 edges using the previous
method) if we connect them in a cycle.

Similarly to the odd n case, if we consider the even n case, we arrive at two new constructions: a = 0 and
b = 1 (a cycle on 4 nodes, with just 4 edges instead of 5), and a = 1 and b = 2 (a cycle on 5 nodes plus
an extra node connected to two non-adjacent nodes of the cycle; this is a network on 6 nodes with just 7
edges instead of 8).

It follows that for n > 6, the initial construction is optimal.

Page 2 of 6

42nd Petrozavodsk Programming Camp and ICPC Training Camp
Day 7: Gennady Korotkevich Contest 6, Tuesday, February 8, 2022

Problem Tutorial: “Escaped from NEF”
How to solve the problem for a tree? Since there are no cycles, we have a directed acyclic graph. We can
use dynamic programming to find the number of vertices reachable from each vertex i: dpi = 1+

∑
ij∈E

dpj .

It can be seen that every vertex will be counted towards dpi at most once, and this DP is correct.

What changes if we have cycles? First of all, we can compress strongly connected components in G. Once
we do that, each vertex i now has weight wi, and the formula changes to dpi = wi +

∑
ij∈E

dpj .

However, there is another issue: some vertices now may be counted twice towards dpi. That would only
happen if there is an undirected cycle consisting of two directed paths i → j. In this case, all vertices
reachable from j will be counted twice, and we should subtract dpj from dpi.

We can identify all cycles in a cactus in linear time, check if they consist of two directed paths (the easiest
way to do that is to calculate vertex outdegrees, and check if there’s a single vertex of outdegree 2 and a
single vertex of outdegree 0), and remember all pairs (i, j) for such cycles. After that we can just run the
DP algorithm. The overall time complexity is O(n+m).

Problem Tutorial: “First Occurrence”
Let’s use the following recursive property of the Thue-Morse sequence: if we replace every 0 with 01 and
every 1 with 10 in T simultaneously, we get T again.

Let’s try to apply this property in reverse. Let’s consider some small example. Suppose we want to
find substring 010010 in T . Since its predecessor substring (with respect to the described property) also
appears in T , let’s split the characters into pairs. We have two ways to do that: 01 00 10 and 0 10 01
0 (depending on the parity of the index of the occurrence). In the first case, since one of the pairs 00 is
neither 01 nor 10, we can conclude that this split is invalid. In the second case, we can see that the string
0 10 01 0 can be generated from 1100. Thus, if i is the index of the first occurrence of 1100 in T , we
can see that the index of the first occurrence of 010010 in T is exactly 2i+1 (the +1 comes from the fact
that the first “pair” in the split has just one digit).

Now, what happens if both parities result in valid splits? For that to happen, each character in the
substring must be not equal to its neighbors, so the substring should look like 010101... or 101010....
However, in this case, the predecessor substrings will look like 0000... or 1111..., and there are no
substrings with more than 2 equal digits in T . It follows that the case when both parities are valid is only
possible when the length of the sought substring is at most 3.

Finally, what if the substring we are looking for is actually a substring of T : tl..r? In this case, if this
substring is long enough, we already know the only valid split! The predecessor substring is tbl/2c..br/2c,
and the parity shift is l mod 2.

Thus, the answer to the problem is f(l, r) = f(
⌊
l
2

⌋
,
⌊
r
2

⌋
) + (l mod 2) if r − l + 1 ≥ 4. By repeatedly

applying this formula, we end up searching for a substring of length at most 3, which can be done naively.
The time complexity of this solution is O(log r).

Problem Tutorial: “Gross LCS”
Consider a particular value of x. Let (i1, j1), (i2, j2), . . . , (ik, jk) be all pairs (i, j) such that ai + x = bj .
Let’s order these pairs in such a way that it ≤ it+1, and if it = it+1 then jt > jt+1. Then
LCS(A+x,B) = LIS(〈j1, j2, . . . , jk〉), where LIS denotes the length of the longest increasing subsequence
(basically, both LCS(A + x, b) and LIS(〈j1, j2, . . . , jk〉) choose as many pairs (i, j) as possible in such a
way that both i’s and j’s are strictly increasing).

Note that each pair (i, j) can only be used for one x, namely, x = bj − ai. A solution that uses
O(nm log(nm)) time and O(nm) memory looks as follows:

• Sort all tuples (x = bj − ai, i,−j) in increasing order.

Page 3 of 6

42nd Petrozavodsk Programming Camp and ICPC Training Camp
Day 7: Gennady Korotkevich Contest 6, Tuesday, February 8, 2022

• For each block of tuples with equal x, find the LIS of the values of j and add it to the answer.

To get to O(n+m) memory, we need two ideas.

The first idea is how to generate tuples (x, i,−j) in increasing order without storing them all in memory.
We will generate these tuples one by one.

Let p1, p2, . . . , pm be a permutation of 1, 2, . . . ,m such that bpj ≤ bpj+1 , and if bpj = bpj+1 , then pj > pj+1.
Note that tuples (bp1 − ai, i,−p1), . . . , (bpm − ai, i,−pm) are sorted in this exact order.

Consider a priority queue containing the smallest unused tuple for each i. Initially, this priority queue
contains the tuple (bp1 − ai, i,−p1) for each i. We will repeat the following process:

• Pop the smallest tuple from the priority queue, let this tuple be (bpj − ai, i,−pj).

• Add this tuple to the global sorted list of tuples.

• If j < m, add (bpj+1 − ai, i,−pj+1) to the priority queue.

Finally, to avoid using O(nm) memory, instead of adding tuples to the list, let’s process them on the go.
Maintain a virtual integer sequence, initially empty. Once a tuple emerges, if its x is different from the
previous tuple’s x, add the LIS of the sequence to the answer and “clear” the sequence. Then, “append”
the tuple’s value of j to the sequence (without actually appending).

How to find the LIS of an integer sequence “online”, without storing the whole sequence? Both usual
methods for finding LIS can be adapted:

• One can use DP with Binary Indexed/Fenwick/Segment tree. Whenever an integer j appears, find
the maximum value M on the prefix 0..j − 1 in your data structure, and update element j with
M + 1. The data structure is of size O(m), and we can either use “timers” to clear it (save the last
time of modification for each cell, and the last time the data structure was cleared), or save the
pointers to all modified cells and clear them when required.

• The other approach, using binary search, works even better. The vector in which we do the binary
search always has length at most m, and it can even be cleared explicitly.

Problem Tutorial: “Hundred Thousand Points”
Basically, we want to know the n-dimensional volume formed by all points (α1, α2, . . . , αn) leading to
non-intersecting angle arrangements.

Note that the angles from every point except (1, 0) and (n, 0) must be fully contained inside either the
upper or the lower half-plane. First, suppose that angles from (1, 0) and (n, 0) also satisfy this property.

Suppose that we have decided, for each angle, what half-plane it goes to. Suppose that angles of
b1, b2, . . . , bk degrees go to the upper half-plane. It can be shown that the k-dimensional volume of
non-intersecting arrangements is (180 − b1 − b2 − . . . − bk)

k/k!. For the remaining n − k angles of
c1, c2, . . . , cn−k going to the lower half-plane, the formula for the (n − k)-dimensional volume is similar:
(180 − c1 − c2 − . . . − cn−k)n−k/(n − k)!. The overall n-dimensional volume is the product of these two
values.

Now, suppose that the angle from point (1, 0) contains point (0, 0). Let’s say that out of the remaining
n − 1 angles, k angles of b1, b2, . . . , bk degrees go to the upper half-plane, and the remaining n − k − 1
angles of c1, c2, . . . , cn−k−1 degrees go to the lower half-plane. There is a continuous segment of the
(1, 0)-verticed angle positions, each position corresponds to a real value x ∈ [0; a1]. The formula for the
(n− 1)-dimensional volume for a fixed value of x looks as follows:

(180− x− b1 − b2 − . . .− bk)k · (180− (a1 − x)− c1 − c2 − . . .− cn−k−1)n−k−1/(k!(n− k − 1)!).

Page 4 of 6

42nd Petrozavodsk Programming Camp and ICPC Training Camp
Day 7: Gennady Korotkevich Contest 6, Tuesday, February 8, 2022

Now we need to integrate this function over x from 0 to a1 to get the n-dimensional volume. To do that,
we can explicitly find the polynomial of x (of degree n− 1), find its primitive, and substitute x = a1.

The case when the angle from point (n, 0) contains point (n+ 1, 0) is symmetric.

The case when both the angle from point (1, 0) goes left and the angle from point (n, 0) goes right is
trickier, it will result in a double integral over two variables x ∈ [0; a1] and y ∈ [0; an]. However, it’s possible
to substitute z = x+ y, split the integration inteval into three parts, and integrate them separately. The
full mathematical details are omitted here.

Finally, if we just choose for each angle whether it goes up or down, we will have O(2n) options. We can
use a knapsack-like DP instead, since we are only interested in the number and the total degree value of
the angles going up.

The time complexity of this solution is O(M4) where M = 180 is half the full angle, in degrees: we have
O(M2) options for the pair (number of angles, their total degree), and building the polynomial for each
such pair takes O(M2) time. FFT can improve the complexity to O(M3 logM), but this was not required.

Problem Tutorial: “Implemented Incorrectly”
Suppose that for each step of the algorithm we decide whether ai < a1 or not. There are 2n−1 ways to
decide that. For each way to decide, we can count the number of permutations corresponding to it, and
add it to the answer if 1 doesn’t end up at the front.

We can implement this with backtracking. Let f(step, ptr, cnt, ways, seen[n]) be the backtracking function
with the following meaning of the arguments:

• step is the current i of the algorithm from the problem statement;

• ptr is the pointer to the smallest element of the permutation seen so far;

• cnt is the number of seen elements;

• ways is the number of permutations of seen elements leading to the current situation;

• seen[] is the boolean array containing what elements of the permutation we have actually seen.

At the next step of the algorithm, aptr will be compared to a(ptr+step) mod n. If seen[(ptr+ step) mod n] is
true, we already know that aptr is smaller, so we just call f(step+1, ptr, cnt, ways, seen[]). Otherwise, we
mark seen[(ptr+ step) mod n] with true, and then we call f(step+ 1, ptr, cnt+ 1, ways · cnt) (assuming
aptr is smaller) and f(step+ 1, (ptr + step) mod n, cnt+ 1, ways) (assuming aptr is bigger).

As we can already see, this backtracking works in O(2n). It turns out that because in some cases we don’t
branch, the actual number of backtracking calls for n = 42 is around 109, which makes this solution fast
enough, at least for precomputing the answers.

Problem Tutorial: “Junk or Joy”
The given equation is equivalent to (n− 1)(n+ 1) = k · pm. Note that GCD(n− 1, n+ 1) = 1 or 2.

First, consider the case p > 2. Then only one of n−1 and n+1 can be divisible by p. Thus, n±1 = x ·pm
and n ∓ 1 = k

x for some x which is an integer divisor of k. From these two equations, it follows that

pm =
k
x
±2
x . We can try all divisors x of k, try both +2 and −2, and for every integer value of pm we get,

check if this number is actually a prime power.

When p = 2, things are not very different. It can happen that both n + 1 and n − 1 are divisible by
2, but it can’t happen that both are divisible by 4. Thus, n ± 1 = x · 2m−1 and n ∓ 1 = 2k

x . It follows

that 2m−2 =
k
x
±1
x , which is similar to the formula from the previous paragraph, and the same algorithm

applies.

Page 5 of 6

42nd Petrozavodsk Programming Camp and ICPC Training Camp
Day 7: Gennady Korotkevich Contest 6, Tuesday, February 8, 2022

Problem Tutorial: “Kilk Not”
Let’s do a binary search on k, the maximum allowed length of a block of consecutive equal digits.

For a fixed value of k, let’s find bmin and bmax — the smallest and the largest numbers of 1’s in a string t
obtained by replacing ? in s and satisfying the maximum block condition.

These values can be found greedily, but the greedy algorithm is a bit tricky. We can use dynamic
programming instead. Let fmin(i, c) denote the smallest number of 1’s in t1..i if ti = c. Then, in general:

• fmin(i, 0) =
i−1
min
j=i−k

fmin(j, 1);

• fmin(i, 1) =
i−1
min
j=i−k

fmin(j, 0) + (i− j).

However, in some cases, since some characters are already known, the lower bound on j might be greater
than i− k. In any case, this DP can be calculated in O(n) using a queue supporting the global minimum
query.

Suppose we have found bmin and bmax, can we replace ?’s in s with exactly b ones and satisfy the maximum
block condition too? If b < bmin or b > bmax, the answer is obviously “no”. Otherwise, if bmin ≤ b ≤ bmax,
it can be proved that the answer is “yes”.

How can we prove that? Let tmin and tmax be the strings achieving bmin and bmax, respectively. Then,
due to monotonicity, there exists i such that t = tmin[1..i] + tmax[i + 1..n] contains exactly b ones. We
have to be a little careful though: if tmin[i] = tmax[i + 1], we might get an unexpected block of equal
digits. However, it turns out we can always choose such i that tmin[i] 6= tmax[i + 1]. The proof is left as
an exercise.

Page 6 of 6

