Problem A. Autobiography

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 512 mebibytes
Bobo has an undirected graph with n vertices and m edges. The vertices are numbered by $1, \ldots, n$, and the i-th edge is between the a_{i}-th and the b_{i}-th vertex. Plus, the i-th vertex is associated with a character c_{i}.

Find the number of ways to choose four distinct vertices (u, v, w, x) such that

- u and v, v and w, w and x are connected by an edge,
- $c_{u}=\mathrm{b}, c_{v}=\mathrm{o}, c_{w}=\mathrm{b}, c_{x}=\mathrm{o}$.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains two integers n and m.
The second line contains n characters $c_{1} \ldots c_{n}$.
For the following m lines, the i-th line contains two integers a_{i} and b_{i}.

- $4 \leq n \leq 2 \times 10^{5}$
- $0 \leq m \leq 2 \times 10^{5}$
- $c_{i} \in\{\mathrm{~b}, \circ\}$ for each $1 \leq i \leq n$
- $1 \leq a_{i}, b_{i} \leq n$ for each $1 \leq i \leq m$
- $a_{i} \neq b_{i}$ for each $1 \leq i \leq m$
- $\left\{a_{i}, b_{i}\right\} \neq\left\{a_{j}, b_{j}\right\}$ for each $1 \leq i<j \leq m$
- In each input, the sum of n does not exceed 2×10^{5}. The sum of m does not exceed 2×10^{5}.

Output

For each test case, output an integer which denotes the number of ways.

Examples

	standard input	
5	4	2
bbobo		standard output
1	3	0
2	3	
3	4	
4	5	
4	6	
bobo		
1	2	
1	3	
1	4	
2	3	
2	4	
3	4	
4	0	
bobo		

Note

For the first test case, there are 2 quadrangles ($1,3,4,5$), ($2,3,4,5$).
For the second test case, there are 4 quadrangles $(1,2,3,4),(1,4,3,2),(3,2,1,4),(3,4,1,2)$.
For the third test case, there are no valid quadrangles.

Problem B. Algebra

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
512 mebibytes

Given three integers n, m, k, find the number of pairs (a, b) where

- $|a|,|b| \leq m$,
- $a, b \in \mathbb{Z}$, i.e., a and b are integers,
- $|S|=k$ where S be the set of rational roots of the equation $x^{n}+a \cdot x+b=0$, and $|S|$ is the size of S. In particular, there exists exactly k distinct rational numbers x which solve the last equation.

Note: x is a rational number if and only if there exists two integers p and $q(q \neq 0)$ where $x=\frac{p}{q}$.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains three integers n, m and k.

- $1 \leq n, m, k \leq 5 \times 10^{5}$
- In each input, the sum of m does not exceed 5×10^{5}.

Output

For each test case, output an integer which denotes the number of pairs.

Examples

		standard input		standard output
2	1	1	1	
2	2	2	7	
3	3	3	1	

Note

For the first test case, only the equation $x^{2}=0$ has one rational root.
For the second test case, each of the following 7 equations has two distinct rational roots.

- $x^{2}-2 x=0$
- $x^{2}-x=0$
- $x^{2}-x-2=0$
- $x^{2}-1=0$
- $x^{2}+x=0$
- $x^{2}+2 x=0$
- $x^{2}+x-2=0$

Problem C. Cryptography

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 512 mebibytes
Given three arrays f, g, h of length 2^{m}, Bobo defines a cryptographic function enc $(x, y)=(a, b)$ where

- $a=y \oplus g[x \oplus f[y]]$,
- $b=x \oplus f[y] \oplus h[y \oplus g[x \oplus f[y]]]$.

He also has q questions $\left(a_{1}, b_{1}\right), \ldots,\left(a_{q}, b_{q}\right)$.
For each $\left(a_{i}, b_{i}\right)$, find a pair of integers (x, y) where $0 \leq x, y<2^{m}$ and enc $(x, y)=\left(a_{i}, b_{i}\right)$. It is guaranteed that for each $\left(a_{i}, b_{i}\right)$, there exists a unique pair (x, y) satisfying the condition.
Note: \oplus denotes the bitwise exclusive-or, i.e., xor.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains two integers m and q.
The second line contains 2^{m} integers $f[0], \ldots, f\left[2^{m}-1\right]$.
The third line contains 2^{m} integers $g[0], \ldots, g\left[2^{m}-1\right]$.
The forth line contains 2^{m} integers $h[0], \ldots, h\left[2^{m}-1\right]$.
For the following q lines, the i-th line contains two integers a_{i} and b_{i}.

- $1 \leq m \leq 16$
- $1 \leq q \leq 10^{5}$
- $0 \leq f[i], g[i], h[i]<2^{m}$ for each $0 \leq i<2^{m}$
- $0 \leq a_{i}, b_{i}<2^{m}$ for each $1 \leq i \leq q$
- In each input, the sum of 2^{m} does not exceed 10^{5}. The sum of q does not exceed 10^{5}.

Output

For each question, output two integers which denote the found x and y.

Examples

			standard input		standard output	
2	2			3	0	
0	1	2	3		1	2
1	2	3	0		0	
2	3	0	1			
0	1					
2	3					
1	1					
0	0					
0	0					
0	0					
0	0					

Problem D. Data Structure

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

In compute science, a stack s is a data structure maintaining a list of elements with two operations:

1. s.push (e) appends an element e to the right end of the list,
2. s.pop() removes the rightmost element in the list and returns the removed element.

For convenience, Bobo denotes the number of elements in the stack s by size (s), and the rightmost element by right (s).

Bobo has m stacks s_{1}, \ldots, s_{m}. Initially, the stack s_{i} contains k_{i} elements $a_{i, 1}, \ldots, a_{i, k_{i}}$ where $a_{i, j} \in\{1, \ldots, n\}$. Furthermore, for each $e \in\{1, \ldots, n\}$, the element e occurs in the m stacks exactly twice. Thus, $k_{1}+\cdots+k_{m}=2 n$.

A sorting plan of length l consists of l pairs $\left(f_{1}, t_{1}\right), \ldots,\left(f_{l}, t_{l}\right)$. To execute a sorting plan, for each $i \in\{1, \ldots, l\}$ in the increasing order, Bobo performs $s_{t_{i}} \cdot \operatorname{push}\left(s_{f_{i}} \cdot \operatorname{pop}()\right)$.
A sorting plan is valid if the length does not exceed $\left\lfloor\frac{3 n}{2}\right\rfloor$, and for each $i \in\{1, \ldots, l\}, 1 \leq f_{i}, t_{i} \leq m$, $f_{i} \neq t_{i}$. Before the i-th operation,

- $\operatorname{size}\left(s_{f_{i}}\right)>0$,
- $\operatorname{size}\left(s_{t_{i}}\right)<2$,
- either $\operatorname{size}\left(s_{t_{i}}\right)=0$ or $\operatorname{right}\left(s_{f_{i}}\right)=\operatorname{right}\left(s_{t_{i}}\right)$.

Also, after the execution of a valid sorting plan, each of the m stacks either is empty or contains the two copies of the same element.
Find a valid sorting plan, given the initial configuration of the m stacks.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains two integers n and m.
For the next m lines, the i-th line contains an integer k_{i}, and k_{i} integers $a_{i, 1}, \ldots, a_{i, k_{i}}$.

- $1 \leq n \leq m \leq 2 \times 10^{5}$
- $0 \leq k_{i} \leq 2$ for each $1 \leq i \leq m$
- $1 \leq a_{i, j} \leq n$ for each $1 \leq i \leq m, 1 \leq j \leq k_{i}$
- For each $1 \leq e \leq n$, there exists exactly two (i, j) where $1 \leq j \leq k_{i}$ and $a_{i, j}=e$.
- In each input, the sum of m does not exceed 2×10^{5}.

Output

For each test case, if there exists a valid sorting plan, output an integer l, which denotes the length of the sorting plan. Followed by l lines, the i-th line contains two integers f_{i} and t_{i}. Otherwise, output ${ }^{\text {' }} 1$ '. If there are multiple valid sorting plans, any of them is considered correct.

Examples

	standard input		standard output	
2	3	3		
2	1	2	1	3
2	1	2	2	3
0		2	1	
1	1	0		
2	1	1	-1	
3	4			
2	1	3		
2	2	3		
1	1			
1	2			

Note

For the first test cases,

- Initially, $s_{1}=[1,2], s_{2}=[1,2], s_{3}=[]$.
- After $s_{3} \cdot \operatorname{push}\left(s_{1} \cdot \operatorname{pop}()\right) . s_{1}=[1], s_{2}=[1,2], s_{3}=[2]$.
- After $s_{3} \cdot \operatorname{push}\left(s_{2} \cdot \operatorname{pop}()\right), s_{1}=[1], s_{2}=[1], s_{3}=[2,2]$.
- After $s_{1} \cdot \operatorname{push}\left(s_{2} \cdot \operatorname{pop}()\right), s_{1}=[1,1], s_{2}=[], s_{3}=[2,2]$.

For the second test case, the initial configuration is already sorted.

Problem E. Game Theory

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: $\quad 512$ mebibytes
For a string $s_{1} \ldots s_{n}$ of n bits (i.e., zeros and ones), Bobo computes the f-value of $s_{1} \ldots s_{n}$ by playing the following game.

- If all the bits are zero, the game ends.
- If there are k ones in the bit string, Bobo flips the k-th bit, i.e., s_{k}.
- The f-value of the bit string is the number of flips Bobo has performed before the game ends.

Formally,

- If $s_{1}=\cdots=s_{n}=0, f\left(s_{1} \ldots s_{n}\right)=0$.
- Otherwise, assuming that $k=s_{1}+\cdots+s_{n}, f\left(s_{1} \ldots s_{n}\right)=f\left(s_{1} \ldots s_{k-1} \overline{s_{k}} s_{k+1} \ldots s_{n}\right)+1$ where \bar{c} denotes the flip of the bit c such as $\overline{0}=1$ and $\overline{1}=0$.

Now, Bobo has a bit string $s_{1} \ldots s_{n}$ subjecting to q changes, where the i-th change is to flip all the bits among $s_{l_{i}} \ldots s_{r_{i}}$ for given l_{i}, r_{i}. Find the f-value modulo 998244353 of the bit string after each change.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains two integers n and q.
The second line contains n bits $s_{1} \ldots s_{n}$.
For the following q lines, the i-th line contains two integers l_{i} and r_{i}.

- $1 \leq n \leq 2 \times 10^{5}$
- $1 \leq q \leq 2 \times 10^{5}$
- $s_{i} \in\{0,1\}$ for each $1 \leq i \leq n$
- $1 \leq l_{i} \leq r_{i} \leq n$ for each $1 \leq i \leq q$
- In each input, the sum of n does not exceed 2×10^{5}. The sum of q does not exceed 2×10^{5}.

Output

For each change, output an integer which denotes the f-value modulo 998244353.

Examples

	standard input		standard output
3	2	1	
010	3		
1	2	5	
2	3		
5	1		
00000	5		
1			

Note

For the first test case, the string becomes " 100 " after the first change. $f(100)=f(000)+1=1$. And it becomes " 111 " after the second change. $f(111)=f(110)+1=f(100)+2=f(000)+3=3$.

Problem F. Graph Theory

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

Bobo has an undirected graph G with n vertices labeled by $1, \ldots, n$ and n edges. For each $1 \leq i \leq n$, there is an edge between the vertex i and the vertex $(i \bmod n)+1$. He also has a list of m pairs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)$.
Now, Bobo is going to choose an i and remove the edge between the vertex i and the vertex $(i \bmod n)+1$. Let $\delta_{i}(u, v)$ be the number of edges on the shortest path between the u-th and the v-th vertex after the removal. Choose an i to minimize the maximum among $\delta_{i}\left(a_{1}, b_{1}\right), \ldots, \delta_{i}\left(a_{m}, b_{m}\right)$.
Formally, find the value of

$$
\min _{1 \leq i \leq n}\left\{\max _{1 \leq j \leq m} \delta_{i}\left(a_{j}, b_{j}\right)\right\}
$$

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains two integers n and m.
For the following m lines, the i-th line contains two integers a_{i} and b_{i}.

- $2 \leq n \leq 2 \times 10^{5}$
- $1 \leq m \leq 2 \times 10^{5}$
- $1 \leq a_{i}, b_{i} \leq n$ for each $1 \leq i \leq m$
- In each input, the sum of n does not exeed 2×10^{5}. The sum of m does not exceed 2×10^{5}.

Output

For each test case, output an integer which denotes the minimum value.

Examples

	standard input		standard output
3	2	1	
1	2		0
2	3	2	
3	2		
1	1		
2	2		
3	3		
1	2		
2	3		
3	1		

Note

For the first case,

i	$\delta_{i}(1,2)$	$\delta_{i}(2,3)$
1	2	1
2	1	2
3	1	1

Choosing $i=3$ yields the minimum value 1 .

Problem G. Hamilton

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Bobo has an $n \times n$ symmetric matrix C consisting of zeros and ones. For a permutation p_{1}, \ldots, p_{n} of $1, \ldots, n$, let

$$
c_{i}=\left\{\begin{array}{ll}
C_{p_{i}, p_{i+1}} & \text { for } 1 \leq i<n \\
C_{p_{n}, p_{1}} & \text { for } i=n
\end{array} .\right.
$$

The permutation p is almost monochromatic if and only if the number of indices $i(1 \leq i<n)$ where $c_{i} \neq c_{i+1}$ is at most one.
Find an almost monochromatic permutation p_{1}, \ldots, p_{n} for the given matrix C.

Input

The input consists of several test cases terminated by end-of-file. For each test case, The first line contains an integer n.
For the following n lines, the i-th line contains n integers $C_{i, 1}, \ldots, C_{i, n}$.

- $3 \leq n \leq 2000$
- $C_{i, j} \in\{0,1\}$ for each $1 \leq i, j \leq n$
- $C_{i, j}=C_{j, i}$ for each $1 \leq i, j \leq n$
- $C_{i, i}=0$ for each $1 \leq i \leq n$
- In each input, the sum of n does not exceed 2000 .

Output

For each test case, if there exists an almost monochromatic permutation, output n integers p_{1}, \ldots, p_{n} which denote the permutation. Otherwise, output -1 .
If there are multiple almost monochromatic permutations, any of them is considered correct.

Examples

standard input			standard output		
3	3	1	2		
001	2	4	3	1	
000					
100					
4					
0000					
0000					
0000					
0000					

Note

For the first test case, $c_{1}=C_{3,1}=1, c_{2}=C_{1,2}=0, c_{3}=C_{2,3}=0$. Only when $i=1, c_{i} \neq c_{i+1}$. Therefore, the permutation $3,1,2$ is an almost monochromatic permutation.

Problem H. Nonsense

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

Given n, x and y, let $f_{n, x, y}(a, b)$ denote the value of

$$
\sum_{i=a}^{n-b}\binom{i}{a} x^{i-a}\binom{n-i}{b} y^{n-i-b} .
$$

Bobo also has q pairs $\left(a_{1}, b_{1}\right), \ldots,\left(a_{q}, b_{q}\right)$. Find the value of $f_{n, x, y}\left(a_{1}, b_{1}\right), \ldots, f_{n, x, y}\left(a_{q}, b_{q}\right)$ modulo 998244353.

Note:

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!} .
$$

Input

The input consists of several test cases terminated by end-of-file. For each test case, The first line contains four integers n, x, y and q.

In the following q lines, the i-th line contains two integers a_{i} and b_{i}.

- $2 \leq n \leq 10^{9}$
- $0 \leq x, y<998244353$
- $1 \leq q \leq 2 \times 10^{5}$
- $1 \leq a_{i}, b_{i} \leq 5000$ for each $1 \leq i \leq q$
- $a_{i}+b_{i} \leq n$ for each $1 \leq i \leq q$
- In each input, the sum of $\max \left(a_{1}, b_{1}, \ldots, a_{q}, b_{q}\right)$ does not exceed 5000 . The sum of q does not exceed 2×10^{5}.

Output

For each pair, output an integer which denotes the value modulo 998244353.

Examples

			standard input	standard output		
3	1	2	2		6	
1	1				1	
1	2				866021789	
100	2	3	1			
1	1					

Problem I. Number Theory

Input file: standard input
Output file: standard output
Time limit: 7 seconds
Memory limit: 512 mebibytes
Let $o_{i}=\underbrace{1 \ldots 1}_{i \text { times }}$ be the number which consists of i ones in its decimal representation.
Bobo has an integer n. Find a sequence of possibly negative integers $\left(x_{1}, x_{2}, \ldots,\right)$ where

- $\sum_{i=1}^{\infty} o_{i} \cdot x_{i}=n$,
- $\sum_{i=1}^{\infty} i \cdot\left|x_{i}\right|$ is minimized.

Input

The input consists of several test cases terminated by end-of-file. For each test case, The first line contains an integer n.

- $1 \leq n<10^{5000}$
- In each input, the sum of the number of decimal digits of n does not exceed 50000 .

Output

For each test case, output an integer which denotes the minimum value of $\sum_{i=1}^{\infty} i \cdot\left|x_{i}\right|$.

Examples

	standard input	
12	3	standard output
100	5	
998244353	76	

Note

For the first test case, $x_{1}=x_{2}=1, x_{3}=x_{4}=\cdots=0$. The minimum value is $1 \times 1+2 \times 1=3$.
For the second test case, $x_{1}=0, x_{2}=-1, x_{3}=1, x_{4}=x_{5}=\cdots=0$. The minimum value is $2 \times 1+3 \times 1=5$.

Problem J. Permutation Pattern

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

A sequence a_{1}, \ldots, a_{m} of m distinct numbers is called ${ }^{*}$ without 231^{*} if there is ${ }^{* *}{ }_{n o}{ }^{* *}$ triples (i, j, k) where $1 \leq i<j<k \leq m$ and $a_{k}<a_{i}<a_{j}$.
Bobo has a permutation p_{1}, \ldots, p_{n} of $1, \ldots, n$, and he can remove some (possibly none, but not all) elements from the permutation. Find the number of sequences without 231 among $\left(2^{n}-1\right)$ resulting permutations.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains an integer n.
The second line contains n integers p_{1}, \ldots, p_{n}.

- $1 \leq n \leq 50$
- $1 \leq p_{i} \leq n$ for each $1 \leq i \leq n$
- In each input, the sum of n does not exceed 500 .

Output

For each test case, output an integer which denotes the number of sequences.

Examples

	standard input		standard output	
2			3	
3		7		
1	2	3		11
4				
2	3	4	1	

Problem K. Stringology

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

For a string $u=u_{1} \ldots u_{n}$, Bobo denotes the prefix $u_{1} \ldots u_{i}$ by pre (u, i). Similarly, he denotes the suffix $u_{n-i+1} \ldots u_{n}$ by $\operatorname{suf}(u, i)$. In particular, pre $(u, 0)$ and $\operatorname{suf}(u, 0)$ are empty strings.
For two strings $u=u_{1} \ldots u_{n}$ and $v=v_{1} \ldots v_{m}$, Bobo denotes the concatenation $u_{1} \ldots u_{n} v_{1} \ldots v_{m}$ by $u+v$. Also,

$$
\operatorname{presuf}(u, v)=\max \{i \mid i<n \text { and } i \leq m \text { and } \operatorname{pre}(u, i)=\operatorname{suf}(v, i)\} .
$$

Given two strings $s=s_{1} \ldots s_{n}$ and $t=t_{1} \ldots t_{m}$, let $f(i)=\operatorname{presuf}(s, \operatorname{pre}(s, i)+t)$. Find the value of $f(0), \ldots, f(n-1)$.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains a string $s_{1} \ldots s_{n}$.
The second line contains a string $t_{1} \ldots t_{m}$.

- $1 \leq n, m \leq 10^{6}$
- $s_{i} \in\{a, \ldots, z\}$ for each $1 \leq i \leq n$
- $t_{i} \in\{a, \ldots, z\}$ for each $1 \leq i \leq m$
- In each input, the sum of $\max (n, m) \leq 10^{6}$.

Output

For each test case, output n integers which denote $f(0), \ldots, f(n-1)$.

Examples

	standard input				standard output	
aaa	1	2	2			
a	1	1	3	1	3	
ababa	0	0				
ab						
ab						

Note

For the second case, $f(4)=\operatorname{presuf}(s, \operatorname{pre}(s, 4)+t)=\operatorname{presuf}(\operatorname{ababa}, \operatorname{abab}+\mathrm{a})=\operatorname{presuf}(\mathrm{ababa}, \operatorname{ababa})$.

i	pre(ababa, i)	suf(ababa, i)
0	(an empty string)	(an empty string)
1	a	a
2	ab	ba
3	aba	aba
4	abab	baba

Therefore, $f(4)=3$.

Problem L. 2D Geometry

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: $\quad 512$ mebibytes
There are n distinct points on a 2 -dimension plane. The coordinates of the i-th point is $\left(x_{i}, y_{i}\right)$.
If there are three points A, B and C which form a triangle $A B C$ with positive area, Bobo can remove them simultaneously from the plane. Also, if there are multiple triangles with positive area, Bobo can choose to remove any of them. Find the minimum number of points left on the plane if he can perform the operation for any number of times.

Input

The input consists of several test cases terminated by end-of-file. For each test case,
The first line contains an integer n.
For the following n lines, the i-th line contains two integers x_{i} and y_{i}.

- $1 \leq n \leq 2 \times 10^{5}$
- $0 \leq x_{i}, y_{i} \leq 10^{9}$ for each $1 \leq i \leq n$
- $\left(x_{i}, y_{i}\right) \neq\left(x_{j}, y_{j}\right)$ for each $1 \leq i<j \leq n$
- In each input, the sum of n does not exceed 2×10^{5}.

Output

For each test case, output an integer which denotes the minimum number of points left.

Examples

	standard input		standard output
3		3	
0	0		0
0	1		
0	2		
3			
0	0		
0	1		
1	0		
6			
0	0		
0	1		
0	2		
0	3	1	
1	2		

Note

For the third test case, if Bobo chooses to remove the triangle $\{(0,1),(1,1),(1,2)\}$ first, there will be no other triangles to remove. Alternatively, Bobo can remove the triangle $\{(0,0),(0,1),(1,1)\}$ first and then $\{(0,2),(0,3),(1,2)\}$.

Problem M. 3D Geometry

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

An axis-aligned tetrahedron (also known as triangular pyramid) $D A B C$ is a convex polyhedron in three dimension with vertices

- $D:\left(x_{1}, y_{1}, z_{1}\right)$,
- $A:\left(x_{2}, y_{1}, z_{1}\right)$,
- $B:\left(x_{1}, y_{2}, z_{1}\right)$,
- $C:\left(x_{1}, y_{1}, z_{2}\right)$.

Also, an axis-aligned cube $P Q R S D E F G$ is a convex polyhedron with vertices

- $P:\left(x_{3}, y_{3}, z_{3}\right)$,
- $Q:\left(x_{3}, y_{3}, z_{4}\right)$,
- $R:\left(x_{3}, y_{4}, z_{3}\right)$,
- $S:\left(x_{3}, y_{4}, z_{4}\right)$,
- $D:\left(x_{4}, y_{3}, z_{3}\right)$,
- $E:\left(x_{4}, y_{3}, z_{4}\right)$,
- $F:\left(x_{4}, y_{4}, z_{3}\right)$,
- $G:\left(x_{4}, y_{4}, z_{4}\right)$.

Given an axis-aligned tetrahedron $D A B C$ and an axis-aligned cube $P Q R S D E F G$, find the volume of their intersection.

Input

The input consists of several test cases terminated by end-of-file. For each test case, There are 4 lines, and the i-th line contains three integers x_{i}, y_{i}, and z_{i}.

- $-500 \leq x_{i}, y_{i}, z_{i} \leq 500$ for each $1 \leq i \leq 4$
- $x_{1} \neq x_{2}, y_{1} \neq y_{2}, z_{1} \neq z_{2}$
- $x_{3} \neq x_{4}, y_{3} \neq y_{4}, z_{3} \neq z_{4}$
- In each input, the number of test cases does not exceed 10^{5}.

Output

For each test case, output a float which denotes the volume.
Your answer is considered correct if its absolute or relative error doesn't exceed 10^{-6}.

Examples

	standard input	standard output	
0	0	0	0.166666667
1	1	1	
0	0	0	
1	1	1	
0	0	0	
2	2	2	
0	0	0	
1	1	1	
0	2	0	
2	0	2	
1	0	1	
0	1	0	

