A. Easy Math

Given n integers $a_{1}, a_{2}, \ldots, a_{n}$, check if the sum of their square root $\sqrt{a_{1}}+\sqrt{a_{2}}+\cdots+\sqrt{a_{n}}$ is a integer.

Input

The input consists of multiple tests. For each test:
The first line contains 1 integer $n\left(1 \leq n \leq 10^{5}\right)$. The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq\right.$ 10^{9}).

Output

For each test, write "Yes" if the sum is a integer, or "No" otherwise.

Sample Input

2
14
2
23

Sample Output

Yes
No

B. Carries

frog has n integers $a_{1}, a_{2}, \ldots, a_{n}$, and she wants to add them pairwise.
Unfortunately, frog is somehow afraid of carries (进位). She defines hardness $h(x, y)$ for adding x and y the number of carries involved in the calculation. For example, $h(1,9)=1, h(1,99)=2$.

Find the total hardness adding n integers pairwise. In another word, find

$$
\sum_{1 \leq i<j \leq n} h\left(a_{i}, a_{j}\right)
$$

Input

The input consists of multiple tests. For each test:
The first line contains 1 integer $n\left(2 \leq n \leq 10^{5}\right)$. The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$. $\left(0 \leq a_{i} \leq 10^{9}\right)$.

Output

For each test, write 1 integer which denotes the total hardness.

Sample Input

2
55
10
0123456789

Sample Output

1
20

C．Censor

frog is now a editor to censor so－called sensitive words（敏感词）．
She has a long text p ．Her job is relatively simple－just to find the first occurence of sensitive word w and remove it．
frog repeats over and over again．Help her do the tedious work．

Input

The input consists of multiple tests．For each test：
The first line contains 1 string w ．The second line contains 1 string p ． （ $1 \leq$ length of $w, p \leq 5 \cdot 10^{6}, w, p$ consists of only lowercase letter）

Output

For each test，write 1 string which denotes the censored text．

Sample Input

```
abc
aaabcbc
b
bbb
abc
ab
```


Sample Output

a
ab

D. Vertex Cover

frog has a graph with n vertices $v(1), v(2), \ldots, v(n)$ and m edges $\left(v\left(a_{1}\right), v\left(b_{1}\right)\right),\left(v\left(a_{2}\right), v\left(b_{2}\right)\right), \ldots,\left(v\left(a_{m}\right), v\left(b_{m}\right)\right)$. She would like to color some vertices so that each edge has at least one colored vertex.

Find the minimum number of colored vertices.

Input

The input consists of multiple tests. For each test:
The first line contains 2 integers $n, m\left(2 \leq n \leq 500,1 \leq m \leq \frac{n(n-1)}{2}\right)$. Each of the following m lines contains 2 integers $a_{i}, b_{i}\left(1 \leq a_{i}, b_{i} \leq n, a_{i} \neq b_{i}, \min \left\{a_{i}, b_{i}\right\} \leq 30\right)$

Output

For each test, write 1 integer which denotes the minimum number of colored vertices.

Sample Input

32
12
13
65
12
13
14
25
26

Sample Output

1
2

E. Rectangle

frog has a piece of paper divided into n rows and m columns. Today, she would like to draw a rectangle whose perimeter is not greater than k.

There are 8 (out of 9) ways when $n=m=2, k=6$
Find the number of ways of drawing.

Input

The input consists of multiple tests. For each test:
The first line contains 3 integer $n, m, k\left(1 \leq n, m \leq 5 \cdot 10^{4}, 0 \leq k \leq 10^{9}\right)$.

Output

For each test, write 1 integer which denotes the number of ways of drawing.

Sample Input

226
110
50000500001000000000

Sample Output

8
0
1562562500625000000

F. Necklace

frog has n gems arranged in a cycle, whose beautifulness are $a_{1}, a_{2}, \ldots, a_{n}$. She would like to remove some gems to make them into a beautiful necklace without changing their relative order.

Note that a beautiful necklace can be divided into 3 consecutive parts X, y, Z, where

1. X consists of gems with non-decreasing beautifulness,
2. y is the only perfect gem. (A perfect gem is a gem whose beautifulness equals to 10000)
3. Z consists of gems with non-increasing beautifulness.

Find out the maximum total beautifulness of the remaining gems.

Input

The input consists of multiple tests. For each test:
The first line contains 1 integer $n\left(1 \leq n \leq 10^{5}\right)$. The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$. $\left(0 \leq a_{i} \leq 10^{4}, 1 \leq\right.$ number of perfect gems $\left.\leq 10\right)$.

Output

For each test, write 1 integer which denotes the maximum total remaining beautifulness.

Sample Input

6
1000032423
2
1000010000

Sample Output

10010
10000

G. Party

n frogs are invited to a tea party. Frogs are conveniently numbered by $1,2, \ldots, n$.
The tea party has black and green tea in service. Each frog has its own preference. He or she may drink only black/green tea or accept both.

There are m pairs of frogs who dislike each other. They fight when they are serving the same type of tea.
Luckily, frogs can be divided into 2 groups such that no two frogs in the same group dislike each other.
Frogs like gems. If the i-th frog can be paid w_{i} gems instead of serving tea, it will not fight with others anymore.
The party manager has to dicide how to serve tea/pay gems to avoid fights, minimizing the total gems paid.

Input

The input consists of multiple tests. For each test:
The first line contains 2 integers $n, m\left(1 \leq n \leq 10^{3}, 0 \leq m \leq 10^{4}\right)$. The second line contains n integers $w_{1}, w_{2}, \ldots, w_{n} .\left(1 \leq w_{i} \leq 10^{6}\right)$.
The third line contains n integers $p_{1}, p_{2}, \ldots, p_{n} .\left(1 \leq p_{i} \leq 3\right) . p_{i}=1$ means the i-th frog drinks only black tea. $p_{i}=2$ means it drinks only green one, while $p_{i}=3$ means it accepts both.

Each of the following m lines contains 2 integers a_{i}, b_{i}, which denotes frog a_{i} and b_{i} dislike each other. $\left(1 \leq a_{i}, b_{i} \leq n\right)$

Output

For each test, write 1 integer which denotes the minimum total gems paid.

Sample Input

21
11
33
12
21
11
22
12
32
212
132
12
23

Sample Output

H. Range Query

frog has a permutation $p(1), p(2), \ldots, p(n)$ of $\{1,2, \ldots, n\}$. She also has $m_{1}+m_{2}$ records $\left(a_{i}, b_{i}, c_{i}\right)$ of the permutation.

- For $1 \leq i \leq m_{1},\left(a_{i}, b_{i}, c_{i}\right)$ means $\min \left\{p\left(a_{i}\right), p\left(a_{i}+1\right), \ldots, p\left(b_{i}\right)\right\}=c_{i}$;
- For $m_{1}<i \leq m_{1}+m_{2},\left(a_{i}, b_{i}, c_{i}\right)$ means $\max \left\{p\left(a_{i}\right), p\left(a_{i}+1\right), \ldots, p\left(b_{i}\right)\right\}=c_{i}$.

Find a permutation which is consistent with above records, or report the records are self-contradictory. If there are more than one valid permutations, find the lexicographically least one.
Permutation $p(1), p(2), \ldots, p(n)$ is lexicographically smaller than $q(1), q(2), \ldots, q(n)$ if and only if there exists $1 \leq i \leq n$ which $p(i)<q(i)$ and for all $1 \leq j<i, p(j)=q(j)$.

Input

The input consists of multiple tests. For each test:
The first line contains 3 integers $n, m_{1}, m_{2}\left(1 \leq n \leq 50,0 \leq m_{1}+m_{2} \leq 50\right)$. Each of the following $\left(m_{1}+m_{2}\right)$ lines contains 3 integers $a_{i}, b_{i}, c_{i}\left(1 \leq a_{i} \leq b_{i} \leq n, 1 \leq c_{i} \leq n\right)$.

Output

For each test, write n integers $p(1), p(2), \ldots, p(n)$ which denote the lexicographically least permutation, or " -1 ' ' if records are self-contradictory.

Sample Input

511
151
155
311
122
122

Sample Output

```
12345
-1
```


I. Travel

The country frog lives in has n towns which are conveniently numbered by $1,2, \ldots, n$.
Among $\frac{n(n-1)}{2}$ pairs of towns, m of them are connected by bidirectional highway, which needs a minutes to travel. The other pairs are connected by railway, which needs b minutes to travel.

Find the minimum time to travel from town 1 to town n.

Input

The input consists of multiple tests. For each test:
The first line contains 4 integers $n, m, a, b\left(2 \leq n \leq 10^{5}, 0 \leq m \leq 5 \cdot 10^{5}, 1 \leq a, b \leq 10^{9}\right)$. Each of the following m lines contains 2 integers u_{i}, v_{i}, which denotes cities u_{i} and v_{i} are connected by highway. $\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}\right)$.

Output

For each test, write 1 integer which denotes the minimum time.

Sample Input

3213
12
23
3223
12
23

Sample Output

J. Right turn

frog is trapped in a maze. The maze is infinitely large and divided into grids. It also consists of n obstacles, where the i-th obstacle lies in grid $\left(x_{i}, y_{i}\right)$.
frog is initially in grid $(0,0)$, heading grid $(1,0)$. She moves according to The Law of Right Turn: she keeps moving forward, and turns right encountering a obstacle.

The maze is so large that frog has no chance to escape. Help her find out the number of turns she will make.

Input

The input consists of multiple tests. For each test:
The first line contains 1 integer $n\left(0 \leq n \leq 10^{3}\right)$. Each of the following n lines contains 2 integers x_{i}, y_{i}. $\left(\left|x_{i}\right|,\left|y_{i}\right| \leq 10^{9},\left(x_{i}, y_{i}\right) \neq(0,0)\right.$, all $\left(x_{i}, y_{i}\right)$ are distinct $)$

Output

For each test, write 1 integer which denotes the number of turns, or " -1 ' ' if she makes infinite turns.

Sample Input

2
10
$0-1$
1
01
4
10
01
$0-1$
-1 0

Sample Output

2
0
-1

