HEEENBRXEETENEFRITER

The Ninth Hunan Collegiate Programming Contest

Er: WIMEHET
Prdr: WFEEFAFESUTENAT RS
AR R N SCRH A B

2013410 A 13 H

AKIER1IEAE, £17 Wo AN, HLiBLEHITHEAR,
B A A B R AR NG, 5218 B AT A
A AL B 69 E AR R M —0, RevE i R Ae B Al 7 A —H A Akl T,

IR B U R AT AR P T e 5 The Ninth Hunan Collegiate Programming Contest

"LE A
AL B S 19)

BIN—AT3OR, # i Kl el SOE E S 8 . FriE I el a] SCia]) 2 F8 2 DU 2648) 245 B

1. S LRIk, FhEg R

2. aS)Fb(S) HEA 2k MLBEAF, H a(S) & S MR EIEFERFRF I I F R NE 2 5
FEIRIER, b(S) 2 a(S) T i

tbany k=1 B, Race cat &—EALRISCIE, KA a(S)=racecat Fl b(S)=tacecar RH 2 MIBEAF .

I

NS AEL 25 A, AR SIT. B ITREBEH k (0k<=200) , AT NTFHRES, B85
B ANFRMEANHET 1000 M (BATHAED o S RAESFER. SHMHEMMTTTE 754 (kg s, f)
), HHASUTEAFERF k.

]
XTI, o AT AR ST R R AR AL E (S MU — DT RAE D o WRAEZ N
KA B ST 55 i, R AR BV

3TN A5

1 Case 1: 8 3
Wow, it is a Race cat! Case 2: 1 1
0 Case 3: 15 8
abcdefg

0

Kitty: Madam, I'm adam.

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

) B

w 10

B
%
TR 476, MWESIAWRIRIMS N 1,2, 3,...,ne WRATLAFAT PURDFE 4

IXY BREET XBHBGET Y £l R X BEEY KA ZIE RS .

XY RBREGET XBHBIET Y AL R X EEE Y KA LN 2RSS .

XY RRZLHET XY B HE .

4 KRR

BAIEARTE, B XAET Y. #lun, 4 n=6EMEHRETHIT114)5, &T7/F5IN231456. T
KHAT 235, AT FHAERK 214536, FHIT316, 93264531, m&AMIT 4, 155135462,

DN
AL E AR 10 U5, AR T TAVEOn AR A AH M (1<=nm<=100000) . BLT m 7
T 184

i
HHBERE 1T, B EFERMNENE T RS2 M. MEMNEZ AT N 1-n.
eI KE(GIH
6 4 Case 1: 12
; % é Case 2: 9
31 6 Case 3: 2500050000
4
6 3
11 4
235
316
100000 1
4

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

=N¢
F IR A ?

PRIAESS 2 B — AR AT AR ARG, RAFEERA L, 2,3, WF:

*ok Kk Kk ok

I* II*
Kok Kk Kk ok
x| *

* % o o X

DA
AR E AR, b6 TAR. B AT N TR (1<=n<=10) . LAF SATRHATEE 4n 74T
AT S 547 341, Rk —AEs (A" HTE) .

i
IR AT, MRS AR

HEGIERA G
3 123

* Kk Kk kKK

* *

*
*---

Lk kKK Kok
*

*

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

Problem D

Damaging Your Spreadsheet
(Spreadsheet Tracking II)

Data in spreadsheets are stored in cells, which are organized in rows (r) and columns (c). Some operations on
spreadsheets can be applied to single cells (r,c), while others can be applied to entire rows or columns. Typical cell
operations include inserting and deleting rows or columns and exchanging cell contents.

Some spreadsheets allow users to mark collections of rows or columns for deletion, so the entire collection can be deleted
at once. Some (unusual) spreadsheets allow users to mark collections of rows or columns for insertions too. Issuing an
insertion command results in new rows or columns being inserted before each of the marked rows or columns.

Suppose, for example, the user marks rows 1 and 5 of the spreadsheet on the left for deletion, then marks columns 3, 6, 7,
and 9 for deletion, the spreadsheet shrinks to spreadsheet on the right:

4 B ' Cc|/D E F G H I

22 55 66 77 B8 99 10 12 14 4 | B C D E
2 24 6 8 22 12 14 16 18 2 24 8B 22 16
18 19 20 21 22 23 24 25 26 18 1% 21 za 23
24 25 26 BT 22 69 TO TL 7T 24 23 BT 22 Tl
G8 T8 79 B0 22 25 28 29 30 16 12 10 <2 38
16 12 11 10 22 56 57 53 59 33 34 36 2o 40
33 3¢ 35 36 22 3B 39 40 41

=1 O |CF (W= O ([T
O W L2 (T

If the user marks rows 2, 3 and 5 for insertion, then marks column 3 for insertion, the spreadsheet grows to the one below:
48 E | C|D E F

1 2 24 2 22 18
2
3 | 18 19 21 22 Z5
g
o | 24 25 BT 22 71
B | 16 1Z 10 22 58
T
2 | 33 34 36 22 40

Now that someone damaged your spreadsheet by issuing several insertion, deletion and exchange operations (details are
described below).

Your task is to calculate the number of cells that are kept (not deleted), and the total distance between the original cells
and their final locations. If a cell in (x1, y1) was moved to (x2, y2), the total distance is increased by |x1-x2|+|y1-y2|. You
also need to determine the final locations of some important data.

Input

The input consists of a sequence of spreadsheets, operations on those spreadsheets, and queries about them. Each
spreadsheet definition begins with a pair of integers specifying its initial number of rows (r) and columns (c), followed by
an integer specifying the number (n) of spreadsheet operations. Row and column labeling begins with 1. The following n
lines specify the desired operations. 1<=r,c<=5000, 1<=n<=50. There will be at least one row and one column at any
time.

An operation to exchange the contents of cell (r1, c1) with (r2, c2) is given by: EX r1 cl1 r2 c2. The four insert
and delete commands--DC (delete columns), DR (delete rows), IC (insert columns), and IR (insert rows) are given by:
<command> A X; X, ... X Where <command> is one of the four commands; A is a positive integer not greater
than 5, and Xy, ..., Xa are the labels of the columns or rows to be deleted or inserted before. For each insert and delete
command, the order of the rows or columns in the command has no significance. Within a single delete or insert
command, labels will be unique.

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

The operations are followed by an integer Q(Q<=10000), which is the number of queries for the spreadsheet. Each query
consists of positive integers r and c, representing the row and column number of a cell in the original spreadsheet. For
each query, your program must determine the current location of the data that was originally in cell (r, c).

The end of input is indicated by a row consisting of a pair of zeros for the spreadsheet dimensions.
Output
For each spreadsheet, your program must output its sequence number (starting at 1). In the next line, your program must

output the number of cells that are kept, and the total move distance.

For each query, your program must output the original cell location followed by the final location of the data or the word
GONE if the contents of the original cell location were destroyed as a result of the operations.

Separate output from different spreadsheets with a blank line.

Sample Input Output for the Sample Input

79 Spreadsheet #1

5 There are 25 cell(s) kept, total distance = 29
DR 2 15 Cell data in (4,8) moved to (4,6)

DC 4 3 6 7 9 Cell data in (5,5) GONE

c 1 3 Cell data in (7,8) moved to (7,6)

IR 2 2 4 Cell data in (6,5) moved to (1,2)

EX 1 2 65

4

O o)~ O
O U1 O U1

IR B IUm R A T AR BT 3R 5% The Ninth Hunan Collegiate Programming Contest

==
2 H ok

FNHVET DI — N2 AU R = AT BIRITE RAM ALY T R— =/ (KA “BX”), n-3 Uk
e — N n IR — =M. WRE, =MA7{2,3, 4 lEET.

BN—NZLI, BRI BRI ERL () A B B /N ?

TP
N Z S 30 HIMPREE . B A7 N2 LIRS n(4<=n<=100). PLF n TR Z LK%
AT S AR R (R ZEsHEA T 10000 FOREHD |, 2 8300 B B I 2 HEA

T
WA E, VIR S K R ME, R 4 6L
=L FEG46
4 Case 1: 1.4142
00 Case 2: 10.0499
30
11
0 3
4
00
10 0
10 1
01

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

Problem F

Funny Car Racing

There is a funny car racing in a city with n junctions and m directed roads.

The funny part is: each road is open and closed periodically. Each road is associate with two integers (a, b), that means
the road will be open for a seconds, then closed for b seconds, then open for a seconds... All these start from the
beginning of the race. You must enter a road when it's open, and leave it before it's closed again.

Your goal is to drive from junction s and arrive at junction t as early as possible. Note that you can wait at a junction even
if all its adjacent roads are closed.

Input

There will be at most 30 test cases. The first line of each case contains four integers n, m, s, t (1<=n<=300,
1<=m<=50,000, 1<=s,t<=n). Each of the next m lines contains five integers u, v, a, b, t (1<=u,v<=n, 1<=a,b,t<=10°), that
means there is a road starting from junction u ending with junction v. It's open for a seconds, then closed for b seconds
(and so on). The time needed to pass this road, by your car, is t. No road connects the same junction, but a pair of
junctions could be connected by more than one road.

Output

For each test case, print the shortest time, in seconds. It's always possible to arrive at t from s.
Sample Input Output for the Sample Input

3213 Case 1: 20

1256 3 Case 2: 9

23776

3213

12563

23956

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

i H G
4F %)F

TG —AF2IW, e RIGEIE G ERE T TRAAUERMBGE T, BAREREZ T, WA
WCAME. HRRAREIERA 2 RIZ —ri, B SREE T Pre R E M 22 K 4 7, Bea 51 Bt
TR, FNFREAE. A 10 A2

A??2D?2?7?2?2H??

R EEA AR, AR Y2 -

B A3
A
right of A (A £5 3L/ [A]2%)
left of D (D /2321 (][] %)
D
right of D (D AL/ [F2%)
middle of D and H (D A1 H 1E A [&] f) [H] %)
left of H (H 7214 [2%)
H
right of H (H A4/ [F2%)

0 right of right of H (H 47321 (947 1 F) [F) 272)

TP

MNRE AR . BT RER 0 (1<=n<=100) . F ATRENFER LT, HIBINE DA I 4
H, S S8 TFELRRNEYL 3N, BAgNYS. B0 ANEENGTAEN S, FT—
TRMMPANE g (1<=9<=100) . FHEEC S — B p (I<=p<=n) , BIENFEEFERME (EHE
—NEME D .

]
WA, Sk " middle of X and Y" R A 4@ & AN L B a4 X ALY, R H XAE
Y WA

S

= OO0 ~No ok WNE

HHIBA A5

10 left of D
A??D?7?27?2H7?? H

4 middle of D and H

3 right of right of H
8

6

10

IR B U R AT AR P T e 5 The Ninth Hunan Collegiate Programming Contest

i H H
= R A KA

AR SRR AR R PEEE, PR S S EE TR RN AN R
T tta? BXE: BOVRIFRIR T, 28— ROKIR X ZJa KA RAREARMT 2 &, FreACAS “H T #
K7 o I

ABCRE v M AR) v B 3 ol 72 5 2, ATAR KA 1

Btk KALFE R 6 (PIAHREHE) , BE 2 Gt A HHaE, EARMTIRBEE)

UK KRR 8 (Rt XA 1) . iBF 3.

Bk, SO REAET “307 198 Lo AURFERBKIB L 2 G — PR (RIKALA/INT BRI o
B AT RS KA S i ANBESE “ 37—

BN n SRR R B LRSS 1 IRBOK BT OK AL & AR ZKIKAL by, Git A 2 /0 AT 22D T kIR IR /KAL
N1, HAERKBOK R A K AL — & KT Bt K B3R K KAz .

BN

NSO Be2A 25 IR EdE . SEABEE S — AT A=A n, m k (1<=n,mk<=10") . FH 4T A nA
A h (2<=hi<=10®) , EIZAHHIEE. BUF mATEATES AL a Ml by (1<=bi<ai<=10% a>bi1) . HIAL
AL 5MB.

i

TR, St PR K RIS
3 ETRN FEGI4
2 2 2 Case 1: 1

5 Case 2: 3

O 00N U1 ooy N
DN WWWWN
iy
ul
[e)}

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

Problem |
Interesting Calculator

There is an interesting calculator. It has 3 rows of buttons.

Row 1: button 0, 1, 2, 3, ..., 9. Pressing each button appends that digit to the end of the display.
Row 2: button +0, +1, +2, +3, ..., +9. Pressing each button adds that digit to the display.
Row 3: button *0, *1, *2, *3, ..., *9. Pressing each button multiplies that digit to the display.

Note that it never displays leading zeros, so if the current display is 0, pressing 5 makes it 5 instead of 05. If the current
display is 12, you can press button 3, +5, *2 to get 256. Similarly, to change the display from 0 to 1, you can press 1 or
+1 (but not both!).

Each button has a positive cost, your task is to change the display from x to y with minimum cost. If there are multiple
ways to do so, the number of presses should be minimized.

Input
There will be at most 30 test cases. The first line of each test case contains two integers x and y(0<=x<=y<=10°). Each of
the 3 lines contains 10 positive integers (not greater than 10°), i.e. the costs of each button.

Output

For each test case, print the minimal cost and the number of presses.

Sample Input Output for the Sample Input
12 256 Case 1: 2 2
1111111111 Case 2: 12 3
1111111111

1111111111

12 256

100 100 100 1 100 100 100 100 100 100
100 100 100 100 100 1 100 100 100 100
100 100 10 100 100 100 100 100 100 100

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

=]
=M
BERELKE®
MILFER: Y n>2 0, AEHTE a+b"=c" ¥ IFEE . thin a®+b3=c B IE B ER . A TIEIRAA, R

IR RAFEE SR FEFER a®+b®=c3, XFEFEM T, Eof a=4, b=9, c=79 I} 4°+9°=793,
HONANEERL x, y, SRR x<=a,b,c<=y FIEEHUR I EL.

BN
N AL 10 4180 . AR A NS X,y (1<=x,y<=10°) .
it
X TR AR, A AN HL
E3ETRN HEGla
1 10 Case 1: O
1 20 Case 2: 2

123 456789 Case 3: 16

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

Problem K

Killer Puzzle

Have you tried this horrible-looking puzzle?

1. Which question is the first question whose answer is b?
(a) 2; (b) 3; (c) 4; (d) 5; (e) 6;

2. The only question that has the same answer as its next question is (e.g. option e means question 6 and 7's answers are
the same):
(@) 2; (b) 3; (c) 4; (d) 5; (e) 6;

3. Among the 5 options, which question has the same answer as this question (i.e. question 3)?
(a) 1; (b) 2; (c) 4; (d) 7; (e) 6;

4. How many questions' answer is a?
(8) 0; (b) 1; (c) 2; (d) 3; (e) 4

5. Which of the following questions has the same answer as this question?
(a) 10; (b) 9; (c) 8; (d) 7; (e) 6;

6. The number of questions whose answer is a, equals the number of questions whose answer is:
(@) b; (b) c; (c) d; (d) e; (e) none of above

7. What is the difference of this question's answer and the next question's answer (e.g. the difference of aand b is 1) ?
(a) 4; (b) 3; (c) 2; (d) 1; (e) O;

8. How many questions' answer is a vowel? (only a and e are vowels. Others are consonants)
(a) 2; (b) 3; (c) 4; (d) 5; (e) 6

9. The number of questions whose answer is a consonant is:
(a) a prime; (b) a factorial; (c) a square number; (d) a cubic number; (e) a multiple of 5

10. The answer of this question is:
(a) a; (b) b; (c) ¢; (d) d; (e) e;

Note:

1. make sure that your answer is not self-contradicting. For example, the first question's answer can't be b.

2. make sure that for each question, only your answer is correct, all other options must be incorrect. For example, if
your answer to question 5 is a, then none of question 9, 8, 7, 6's answers can be a!

3. make sure that your answer won't make any question invalid. For example, if question 2 and 3's answer are the same,
and question 8,9's answers are also the same, question 2 would be invalid (because no question is “the only question"
that satisfying the condition)

It's possible to solve this problem by hand, but as a programmer, solving it with a program is more fun!

How to Solve the Puzzle with a Program

Here's one way: enumerate all possible answers (5'° = 9765625), and for each question, check whether only your answer
is correct. Pseudo-code:

forall (answer list):
bad = False
for testing question in [1,2,3,4,5,6,7,8,9,10]:
for testing option in ["a","b","c","d","e"]:
your answer should be correct
if testing option == answer list[testing question] and
check (testing question, testing option) == False:
bad = True

Vil RN N R) IN o a3 The Ninth Hunan Collegiate Programming Contest

other options must be incorrect

if testing option != answer list[testing question] and
check (testing question, testing option) == True:
bad = True
if not bad:

print answer list
Here "answer_list" is a list of letters (subscript is 1-based), where the i-th letter is the answer to the i-th question.

Believe or not, the only answer is: cdebeedcba (if you prefer to add the question index before each answer, it is
1c2d3e4b5e6e7d8c9b10a)

Amazing, huh? There's more. You wish that your program could solve some other puzzles, but first of all, you need to
formulate the puzzle in a formal language.

Formalizing the Puzzle

This problem uses a LISP dialect to represent the puzzle. Don't worry if you don't know LISP, it has a very simple syntax.
(f a b) means calling a function f with parameters a and b. That's like £ (a, b) in C/C++/Java. Similarly, (f a (g
b c) d)islike f(a, g(b, c¢), d) inC/C++/Java.

Here is an example of how to describe a question of the puzzle:

equal (answer 3) (answer (option-value)))

3
a.
b.
c
d
e

There are two very important built-in functions involved:

(answer idx) returns answer_list[idx] in the pseudo-code above.

(option-value) returns the "evaluation result" of testing_option's text, treated as an expression.

In the example above, if testing_option is "c", then (option-value) returns 4 (an integer) because 4 is the expression
presented in the option "c" of this question. Note that testing_option's text can be a complex expression instead of a
simple value. Refer to Sample Input.

The function check (testing question, testing option) above can be implemented as follows:

check (testing question, testing option):

1. set-up the function (option-value) so that it returns the evaluation
result of testing option of testing question

2. evaluate the lisp expression of testing question (e.g. the expression
(equal (answer 3) (answer (option-value))) in the example above)

3. if an unhandled exception is raised during the evaluation, returns False

4. if the result of step 2 is boolean, return it; otherwise return False

There is one special option expression: "none-of-above". The result of "none-of-above™ depends on other options'
evaluation results. In this problem, there can be at most one "none-of-above" for each question, and it must be the last
option.

Details

Here are the details of the LISP dialect used in this problem:

® There are four datatypes: integer, string, boolean and functions.

® There are only two boolean values: true and false. Note that there are no "boolean literal”, so you don't care whether
to use #t and #f (like in Scheme), or t and nil (like in Common Lisp) to represent boolean constants.

@ Integers are always non-negative integers.

WA R R AT U 7 Bt 5 38

The Ninth Hunan Collegiate Programming Contest

@ String literals are always enclosed by double quotes, like "a string".
® There is no variable. All the so-called "identifiers" (consisting of letters and hyphens) are always pre-defined

functions.

Below is a list of pre-defined functions. Functions starting with ! means it may throw an exception, and functions starting
with @ means it can handle exceptions. Like C++/Java/Python, once an exception is raised, the evaluation process is
stopped unless a function handles the exception. In the text below, iff means "if and only if".

Basic functions

(equal a b)

return true iff a and b are of the same type and are equal. In this problem, you'll never
need to compare two functions.

(option-value)

discussed above.

! (answer idx)

discussed above. If idx is not an integer or is not in 1~n (where n is the number of
questions), then raises an exception

! (answer-value idx)

Returns the "evaluation result” of option answer_list[idx] of question idx. Also raises an
exception on error.

Predicates

Predicate is a special kind of function. It always takes a value of any type and returns a boolean value.
prime-p returns true iff the parameter is a positive prime

factorial-p self-explanatory

square-p self-explanatory

cubic-p self-explanatory

vowel-p returns true iff the parameter is a single letter and is a vowel
consonant-p self-explanatory

Queries and statistics

'@ (first-question pred)

Return id of the first question that satisfies “pred". Raises an exception if not
found.

'@ (last-question pred)

Return id of the last question that satisfies “pred". Raises an exception if not
found.

'@ (only-question pred)

Return id of the only question that satisfies “pred". Raises an exception if not
found or more than one question found.

@ (count-question pred)

Return the number of questions that satisfies “pred".

' (diff-answer idx1l idx2)

The difference of answers of question idx1 and idx2. Raises an exception on
error, otherwise the return value is always 0~m-1, where m is the number of
options for each question.

Note that in the first four functions (those with a ‘@’ flag), if an exception was raised when evaluating the predicate, the
exception is handled and the predicate is not considered satisfied. For example, if answer_list is "abc"”, (count-

question

evaluating the predicate for question 3, i.e. ((make-answer-diff-next-equal 0)

(make-answer-diff-next-equal 0)) returns 0 and doesn't raise an exception, even though

3) raised an exception.

However, all other functions will not handle exceptions. For example, if there are only 3 questions, (factorial-p
(answer-value 5)) will raise an exception instead of returning false.

Predicate generators

There are also functions that can create predicates on-the-fly:

! (make-answer-diff-next-
equal num)

returns a predicate (p idx) which evaluates (diff-answer idx idx+1) and
returns true if the result equals to num. Raises an exception if num is not
an integer.

(make-answer-equal a)

returns a predicate (p idx) which evaluates (answer idx) and returns true if
the result equals a.

(make-answer-is pred)

returns a predicate (p idx) which evaluates (answer idx) and returns true if
the result satisfies “pred.

(make-answer-value-equal a)

self-explanatory. The predicate evaluates (answer-value idx)

(make-answer-value-is pred)

self-explanatory. The predicate evaluates (answer-value idx)

! (make-is-multiple num)

returns a predicate (p i) which returns true iff i is an integer and is a
multiple of num. Raises an exception if num is not an integer.

! (make-equal val)

returns a predicate (p v) which returns true iff (equal v val) is true. Raises
an exception if val is neither an integer nor a string.

(make-not pred)

returns a predicate (p v) which returns true iff (pred v) is false.

WA R R AT U 7 Bt 5 38

The Ninth Hunan Collegiate Programming Contest

(make-and predl pred2)

returns a predicate (p v) which returns true iff (pred1 v) and (pred2 v) are
both true. Both predl and pred2 need to be evaluated. No short-circuit
operation should be done.

(make-or predl pred2)

returns a predicate (p v) which returns true iff at least one of (pred1 v) and
(pred2 v) is true. Both predl and pred2 need to be evaluated. No short-
circuit operation should be done.

For example, (make—-is-multiple 3) returns a predicate "is a multiple of 3", s0 ((make-is-multiple 3)

6) returnstrue and ((make-is-multiple 3)

10) returns false. Similarly (make-not (make-or

square-p prime-p)) returns a predicate "neither a square nor a prime".

Input

There will be at most 50 test cases. Each test case begins with two integers n and m(2<=n<=6, 2<=m<=5), the number of
questions and the number of options per question. Each question is described with m+1 lines: the question's expression
and the options. Questions are numbered 1~n, and options are labeled a~e. Options are valid expressions and will not call
option-value (calling option-value makes it recursive!). Each question is followed by a blank line. Most test cases are

easy.

Output

For each test case, print the case number in the first line, and a list of answers, one per line, sorted in ascending order.

There will always be at least one answer.

Sample Input

Output for the Sample Input

33 Case 1:

(equal (option-value) (count-question (make- bcb

answer—-equal "a"))) cca

3 Case 2:

0 aab

1 Case 3:
aba

(equal (option-value) "a") Case 4:

"C" ab

"b" ee

"a" Case 5:
ba

((option-value)
equal "c")))
(make-and (make-is-multiple 2)
factorial-p prime-p))
(make-not prime-p)
"none-of-above"

3 2
(equal
"a"
"none-of-above"

(option-value)

(equal (option-value)
answer-diff-next-equal 0)))
1
2

((option-value)
equal "b")))
(make-is-multiple 2)

(make-not (make-is-multiple 2))

(last-question

32
(equal
"a"

"b"

(option-value)

((option-value) (last-question

(count-question

(answer 2))

(first-question

(answer 1))

(make—-answer-

(make-or

(make-

(make—-answer-

(make—-answer-

WA R R AT U 7 Bt 5 38

diff-next-equal 0)))
(make-equal 2)
"none-of-above"

((option-value) (only-question (make-answer-
equal "b")))

(make-is-multiple 2)

"none-of-above"

2 5

((option-value) (diff-answer 1 2))
factorial-p

prime-p

(make-not square-p)
(make-not cubic-p)
"none-of-above"

(equal (only-question (option-value)) 1)
(make-answer-is consonant-p)
(make-answer-is vowel-p)
(make-answer-value-equal 1)
(make-answer-value-is square-p)
"none-of-above"

2 2

(option-value)

(equal (first-question (make-answer-diff-next-
equal 2)) (first-question (make-answer-diff-
next-equal 2)))

"none-of-above"

(equal (option-value) 1)
1
2

The Ninth Hunan Collegiate Programming Contest

