
Task 1: Voting City (voting city)

Authored and prepared by: Aloysius Lim

Subtask 1

Limits Q = 1, K = 1, No tickets sold

This is just a standard shortest path problem.

Time Complexity: O(E log V)

Subtask 2

Limits: K = 1, No tickets sold.

There are 2 ways to do it. You can run the shortest path problem Q times which will work
for this subtask. However, in preparation for the later tasks, the intended way of reverse the
problem. Instead of finding the shortest path to the voting city, find the shortest path from the
only voting city to each city. You have to reverse the edges however, and do shortest path from
the only voting city. Then, you can answer the query in O(1) time.
Time Complexity: O(E log V +Q) or O(QE log V)

Subtask 3

Limits: K = 1, Q = 1. No tickets sold.

Similar to the above, running the shortest path Q times would work, and you check each voting
city. However, you can continue with the latter approach as well. In this case, there are multiple
voting cities, so a common technique is to use a super source city connecting the voting city
with road edge of 0.

Time Complexity: O(E log V +Q) or O(QE log V)

NOI 2022 National Olympiad in Informatics—Singapore 1

Subtask 4

Limits: K = 1, Q = 1

From this sub task onwards, we have to consider the effects of the tickets. We know we can use
a ticket at most once, and once per road. Furthermore, notice that the number of possible tickets
is small at 5. This motivates keeping a state of the tickets that have been used. Thus, we can
make 32 copies of the cities and compute the shortest path to (city, tickets used). We reconnect
the edges and modify the weights between the new cities whether or not we use a ticket between
them. Then, at the destination, we compare the 32 different possible ticket state and choose the
best cost of them. Note that, while it is possible to incorporate the ticket cost when constructing
the new edges for this subtask, to facilitate further subtasks, it is better to just leave the cost at
the end and then add the costs while computing the best state.
To analysise time complexity, let the number of tickets be T . We thus have T2TE edges and
2TV vertices.
Time Complexity: O(T 22TE log V)

Subtask 5

Limits: K = 1

Notice that in this case, we can no longer just blindly run Q queries. Thus, we have to apply the
trick we did in subtask 2.
Time Complexity: O(T 22TE log V +Q2T)

Subtask 6

Limits: There is only at most 1 ticket.

This is a simplified version of the 5 tickets. However, if the contestant is unable to do the above,
he can just code out a simpler state (city, taken) where taken is just a T/F boolean. Note that
here, since the number of edges and vertices is small, you can indeed run the algorithm Q times.

Time Complexity: O(E log V +Q) with a higher constant.

Subtask 7

Limits: N ≤ 100, E ≤ 1000

NOI 2022 National Olympiad in Informatics—Singapore 2

I added this subtask to allow bad implementation to pass or any not so optimal solutions. I
personally do not know of a weaker solution that can pass this solution without passing the final
one. However, because the constraints are small, if you pass subtask 4 while running Q times,
you should be able to pass this

Time Complexity: O(T 22TE log V +Q2T)

Subtask 8

Limits: None

Finally in this subtask, you add the final trick of the supersource node and finally this concludes
the question.
Time Complexity: O(T 22TE log V +Q2T)

NOI 2022 National Olympiad in Informatics—Singapore 3

Task 2: Gym Badges (gymbadges)

Authored and prepared by: Teow Hua Jun

Subtask 1

Limits N ≤ 10

Iterate through all permutations of gyms and simulate going to the gyms in order and challenge
them if possible. The maximum gym badges you can obtain among all permutations will be the
answer.

Time Complexity: O(N !)

Subtask 2

Limits: L is Constant

Since L is constant the only difference between gyms is the level gained. Sort the gym by Li

and greedily choose the smallest Xi until sum of X chosen is greater than L.

Time Complexity: O(N logN)

Subtask 3

N ≤ 5000

Limits: N ≤ 5000

Note that there exist an optimal solution, a1, a2, a3,, ak where ai is the ith gym challenged,
such that Xai + Lai ≤ Xai+1

+ Lai+1
,∀i < k.

Proof: Assume exist optimal solution, a1, a2, a3,, ak where exist adjacent gyms such that
Xai + Lai > Xai+1

+ Lai+1
.

Lcur =
i−1∑
n=1

Xai

NOI 2022 National Olympiad in Informatics—Singapore 4

Lcur +Xai ≤ Lai+1

Lcur +Xai +Xai+1
≤ Lai+1

+Xai+1
< Lai +Xai

∴ Lcur +Xai+1
< Lai

Thus, we can challenge gym ai+1 before ai, swapping the order of these two adjacent gyms,
note that gyms after the ai+1 gym are not affected as the gyms ai and ai+1 still make Wabbit
gain Xai +Xai+1

levels.

Therefore, from any optimal solution we can keep swapping adjacent gyms to make the solution
sorted with respect to Xi + Li

Using this observation, we can sort the gyms and process them in order.

Let dp(a, b) = Minimum level Wabbit will be at after challenging a gyms after processing b
gyms.

We can form a simple transition of

dp(a, b) =

{
min(dp(a− 1, b− 1) +Xa, dp(a− 1, b)), if dp(a− 1, b− 1) ≤ La

dp(a− 1, b), otherwise

State: O(N2) Transition: O(1)

Time Complexity: O(N2)

Subtask 4

Limits: No further constraints

Using the observation made in subtask 3, we keep the gyms sorted by Xi + Li

Let Sx = {a1, a2, ..., ak} be an optimal set of gyms challenged to obtain the maximum number
of badges with the minimum level gain from the first x gyms and Gx =

∑|Sx|
i=1 Xai , the total

level gain after challenging the gyms in Sx.

Lemma 1: If Ln+1 < Gn and exist y ∈ Sn such that Xy > Xn+1, then we can replace gym y
with gym n+ 1.

Let gym k be the last gym in Sn. Note that k can be the same as y

Gn −Xk ≤ Lk =⇒ Gn ≤ Xk + Lk

≤ Xn+1 + Ln+1

< Xy + Ln+1

NOI 2022 National Olympiad in Informatics—Singapore 5

∴ Gn −Xy < Ln+1

Thus, we can swap gym y with gym (n+ 1)

Solution:

Assume we have the optimal solution for the first nth gyms with the maximum number of
badges with minimum level gain and currently processing our (n+ 1)th gym.

If Ln+1 ≥ Gn, then Sn+1 = Sn ∪ {n+ 1}:

Namely, we add gym n+ 1 to the current solution set of gyms.

This can be proven by contradiction as if exist another set of gyms with greater number of
badges or less level gain. Then there will exist a set of gyms in the first n gyms that have greater
number of badges or less level gain than Sn

Let the gym will the maximum level gain in Sn be gym y

Else if Ln+1 ≥ Gn and Xy > Xn+1, then Sn+1 = Sn \ {y} ∪ {n+ 1}:

Namely, we swap gym y for gym (n+ 1) to have a lower level gain.

We can prove this is optimal as we cannot have |Sn| + 1 gym badges as Ln+1 ≥ Gn and the
level gain is minimised as otherwise Sn will have a smaller level gain. From lemma 1 we can
also see that this swap is possible.

Else Sn+1 = Sn :

We can prove this is optimal using similar logic as the above case.

Hence, as we have shown how to construct the optimal solution of n + 1 gyms from n, we can
inductively generate the answer. The actual implementation can be done using a priority queue
or set to maintain the set of gyms.

Time Complexity: O(N logN)

Alternative solution

The alternative solution is based on the following observations:

Observation 1: suppose gym i has the smallest value of Xi among all gyms. Then there exists
an optimal solution which challenges gym i at some point in time.

Proof of observation 1: Consider the first gym challenged in any optimal solution which does
not use gym i. Change the first gym to gym i.

NOI 2022 National Olympiad in Informatics—Singapore 6

Observation 2: If we know that there exists an optimal solution which challenges gym i, then
we can calculate the answer by doing the following:

• Remove gym i

• For all gyms j ̸= i, if Xj +Lj > Xi+Li, replace Lj by Lj −Xi (if Lj becomes negative
due to this operation, we can delete gym j)

• Calculate the answer to this new problem, and increase the answer by 1

Proof of observation 2: suppose we have a sequence of gym challenges that uses gym i. Now
consider what happens when we delete gym i from the sequence. For every gym j challenged
after i, the entering level when gym j is challenged is decreased by Xi.

Similarly, if we have a solution to the new problem, we can attempt to insert gym j at the latest
possible opportunity, and observe that gyms which satisfy Xj + Lj > Xi + Li are affected.

These two observations immediately give us an O(N2) solution. We can speedup this to
O(N logN) by using lazy propagation segment tree.

NOI 2022 National Olympiad in Informatics—Singapore 7

Task 3: Towers (towers)

Authored and prepared by: Ng Yu Peng

Terminology

Throughout this writeup, points only refer to points where cities are located, and we will refer to
building towers in cities as picking points. A column refers to points with the same x-coordinate
and a row refers to points with the same y-coordinate.

Subtask 1

Limits N ≤ 3

Check if all points are in the same row or column. If they aren’t, pick all the points. If they are
all in the same row, pick the leftmost and rightmost points. If they are all in the same column,
pick the topmost and bottommost points.

Time Complexity: O(1)

Subtask 2

Limitsl: N ≤ 16

Use a bitmask to simulate all 2N ways of building towers, and for each of them, iterate through
the points to store the max/min x-coordinates in each row, and the max/min y-coordinates in
each column, as well as the number of points in each row/column. Now iterate through all the
points again and check the conditions are satisfied.

Time Complexity: O(N2N)

Subtask 3

Limits: N = ab for some positive integers a, b and (Xai+j, Yai+j) = (i + 1, j) for all integers
i, j with 0 ≤ i ≤ b− 1, 1 ≤ j ≤ a

NOI 2022 National Olympiad in Informatics—Singapore 8

Basically the points form a rectangular lattice, just consider the cases a > b and a ≤ b. In the
case a > b, choose the points (red points are chosen) like so:

The case a ≤ b is similar.

Time Complexity: O(N)

Subtask 4

Limits: For every integer a, there are at most
two cities whose x-coordinate is a

Pick the leftmost and rightmost cities in each row/ Since each column has at most 2 points the
conditions are satisfied,

Either sort the sets of points in each row to find the leftmost and rightmost, or keep track of the
leftmost and rightmost x-coordinates in each row while iterating through the points.

Time Complexity: O(N logN) or O(N)

Subtask 5

Limits: N ≤ 5000

We now describe a general algorithm to choose where to build the towers. Let’s extend the idea
in the previous subtask: first pick the leftmost and rightmost points in each row.

Since there may be more than 2 points in a column, some columns may have more than 2 points
picked. Thus we will keep making changes to the set of points picked, while making sure each
row still has at most 2 points picked and each point is either picked or lies between two picked
points, until no column has more than 2 points picked.

NOI 2022 National Olympiad in Informatics—Singapore 9

Consider any column with more than 2 points picked, then look at a picked point in that column
which is not the topmost or bottommost picked point. If it is the only point picked in its row,
delete it from the set of picked points. If it is the rightmost picked point in its row, delete it from
the set and add the point immediately to its left in the same row. If it is the leftmost picked point
in its row, delete it from the set and add the point immediately to its right in the same row.

Clearly, any point in the column of the removed point will still be between two points in the
same row or column, and since we effectively just replaced a point with the point to its imme-
diate left/right, all points in its row will still be between two points in the same row/column,
and obviously each row will still have at most 2 points picked. The process terminates when
there is no column with more than 2 picked points, and when this happens all conditions are
simultaneously satisfied.

Let the distance between the 0/1/2 picked points in each row be the number of points between
them including themselves. Each time we update the set of picked points, the distance decreases
by 1 in the row we change, so the sum of distances in all rows decreases by 1. Since the sum of
distances at the start is N , the process terminates in at most N changes to the picked points.

This subtask is catered to let solutions using O(N) per change pass.

Time Complexity: O(N2)

Subtask 6

Limits: N ≤ 100000

You can store points as pairs (row, index in row) to find the point to its immediate left/right in
the same row quickly. Use a set to store all picked points in each column in this way, then keep
changing the picked points as long as there is some set with size more than 2.

Time Complexity: O(N logN) with large constant.

Subtask 7

Limits: N ≤ 1000000

Since the topmost/bottommost picked point in each column can only get higher/lower every
time we update the set, we can just store these two points for each column, and every other
point goes into a waiting list for removal.

Time Complexity: O(N logN)

NOI 2022 National Olympiad in Informatics—Singapore 10

Task 4: Grapevine (Grapevine)

Authored by: Teow Hua Jun, Jeffrey Lee

Prepared by: Jeffrey Lee, Leong Eu-Shaun

Introduction

Taking joints as vertices and branches as edges, the Grapevine takes the form of a weighted
undirected tree graph. We will denote the distance between two vertices i and j as di,j .

Subtask 1

Limits: N,Q ≤ 2000

Store the tree in adjacency-list format. We can maintain the tree by simply marking/unmarking
vertices and updating edges for soak and anneal actions respectively. Seek queries can then be
answered by running a depth-first search over the entire tree, for a time of O(N) per query.

Time complexity: O(NQ)

Subtask 2

Limits: For all seek actions, qi = 1

For this subtask, we root the tree at vertex 1. Starting from vertex 1, run a depth-first search
to construct an arbitrary Euler Tour representation sequence of the tree, taking only the first
occurence of each vertex such that every vertex appears exactly once. Note in particular that
when any one vertex is picked, the subtree consisting of itself and all its descendants forms a
contiguous subsequence in this Euler sequence. We can hence maintain an auxillary array S of
the same length, such that wherever the ith element of the Euler sequence is vi, the ith value of
the array S is:

Si =

{
d1,vi , if vertex vi has a grape
d1,vi + 1015, if vertex vi has no grapes

With this array, soak actions become a point update to S at the target vertex, while anneal

NOI 2022 National Olympiad in Informatics—Singapore 11

actions become a range add/subtract to the subtree of the target edge’s lower vertex. Seek
queries are then answered by finding the smallest element of the array S, i.e. the range minimum
over all of S. We can perform all three types of query in O(logN) each using a lazy-propagation
segment tree on S.

Time complexity: O((N +Q) logN)

Subtask 3

Limits: The vine forms a complete binary tree, Ai = ⌊ i+1
2
⌋, Bi = i+ 1

For this subtask, we root the tree at vertex 1. The tree has a depth of O(logN), while each
vertex has up to 2 children.

At each vertex, we initially store the shortest distance from that vertex to any of its marked
(grape) descendants. We find that these stored values can be correctly maintained across any
soak and anneal queries by starting at the target vertex, updating its stored value according to
those of its immediate children, and repeating for its parent until all ancestors have also been
updated.

We can then evaluate seek queries by starting from the query vertex qi and trying the stored
values of all of its ancestors, taking the minimum out of these trials. It is guaranteed that the
shortest distance to a marked vertex will be produced this way: The shortest path between any
two vertices in this graph consists of an ascending path from one vertex to their lowest common
ancestor, followed by a descending path to the other vertex. Thus, each ancestor pi covers the
shortest paths from qi to it entire subtree except in the direction of qi itself, which is instead
covered by pi’s child in that direction.

Each query traverses O(logN) ancestors in O(1) time for a complexity of O(logN) each.

Time complexity: O((N +Q) logN)

Subtask 4

Limits: There is at most 1 grape on the vine at any point in time.

Root the tree arbitrarily and construct an Euler Tour sequence as in Subtask 2. By creating an
auxillary array with Si = droot,vi , we can handle anneal queries and also retrieve droot,v for any
one vertex v in O(logN) each.

The answer to a seek query is the length of the direct path between the query vertex qi and the

NOI 2022 National Olympiad in Informatics—Singapore 12

single marked vertex m. As described in Subtask 3, this path travels from qi towards the root
until it reaches the lowest common ancestor of qi and m, where it then proceeds away from the
root and to m. The distance between qi and m can thus be expressed as:

dqi,m = dqi,lca(qi,m) + dlca(qi,m),m = droot,qi + droot,m − 2droot,lca(qi,m)

We can find the lowest common ancestor of qi and m in O(logN) via binary lifting, allowing
us to evaluate seek queries using the above formula to yield a total O(logN) per query.

Time complexity: O((N +Q) logN)

Subtask 5

Limits: All soak actions will occur before any seek or anneal actions. For all anneal actions,
wi = 0.

Prepare and maintain an Euler Tour sequence + binary lifting structure similarly to the previous
subtask, in order to find the distance between arbitrary pairs of vertices quickly.

Construct a centroid decomposition on the tree, initially storing at each vertex the shortest
distance from the vertex itself to any marked vertex in its covered subtree. We seek to keep
these stored values updated across anneal and soak operations.

Suppose an anneal query is performed on an edge connecting vertices ai ←→ bi, reducing the
distance between them to 0. Without loss of generality, let vertex bi be deeper in the centroid-
hierachy tree than ai. It follows that bi must be a descendant of ai in the hierachy tree; vertex
ai’s covered subtree is bounded only at leaves or by its ancestor centroids, and thus contains bi.
Further, vertex ai is the lowest-order centroid whose covered tree contains the edge ai ←→ bi,
and whose stored value may be affected by the anneal operation.

There are then two possibilities for the stored value in ai after the anneal: either the closest
marked vertex in ai’s covered subtree is now on ai’s side of the edge ai ←→ bi, or is instead on
bi’s side. In the former case, the closest marked vertex to ai is the same as before the anneal,
and no update is necessary to ai’s stored value.

It is the latter which needs to be evaluated to cover both cases. This is equivalent to finding
the closest marked vertex to bi within ai’s subtree, which can in turn be retrieved by using the
stored values of every centroid on the hierachy-tree path from bi to ai. Remember in particular
that the covered subtree of bi extends outwards from the edge, terminating only at leaves and
its centroid ancestors - which in turn cover more of ai’s subtree radiating away from the edge
til their own ancestors. There are O(logN) vertices in the centroid tree path from bi to ai,

NOI 2022 National Olympiad in Informatics—Singapore 13

each evaluated in O(logN) time from using the Euler Tour sequence’s distances, for a total
complexity of O(log2N) to update the lowest affected centroid ai.

The remaining centroids on the path from ai to the hierachal root can be updated using the
same process - higher centroids on ai’s side of the edge are to retrieve stored values from their
descendants on bi’s side, while higher centroids on bi’s side will retrieve from descendants on
ai’s side starting from ai itself. However, centroids after ai can be updated in O(logN) each
by keeping a running prefix minimum for each side, such that when iterating upwards from ai
each centroid need only apply its own stored value to the prefix in order to be accounted for by
all its ancestors.

Soak and seek operations are classic on a centroid decomposition with these stored values, and
can also be done in O(log2N) each.

Time complexity: O(N logN +Q log2N)

Subtask 6

Construct a centroid decomposition on the tree. At every centroid, we will store an Euler Tour
sequence over the centroid’s covering subtree, using the auxillary array value in Subtask 2.
Soak queries can then be applied to the target centroid and its ancestors by performing the
point update to each of their Euler Tour arrays; while anneal queries are applied by starting
from the higher of the edge’s incident centroids, and performing the range add/subtract on its
and its ancestors’ Euler Tour arrays. These take O(logN) per centroid, and O(log2N) in total.

The closest marked vertex in any one centroid’s subtree can then be obtained in O(logN) via
the range minimum, over which seeks can be evaluated in classic pattern in O(log2N).

Time complexity: O(N logN +Q log2N)

NOI 2022 National Olympiad in Informatics—Singapore 14

Task 5: Fruits (towers)

Authored by: Benson Lin Zhan Li

Prepared by: Benson Lin Zhan Li and Marc Phua

Terminology

We say that a fruit is fixed if it is already placed, and free otherwise. Similarly, a section is fixed
if a fruit is assigned to it, and free otherwise.

Subtask 1

Limits: N ≤ 8

Since N is very small, we can afford to test every single possible permutation of fruits.

For each of the N ! possible permutations, we first check that the fixed fruits are in the correct
sections. Then we can compute, for each prefix of sections, what the cost incurred is.

Time Complexity: O(N ·N !)

Subtask 2

Limits: Aj = −1 for all 1 ≤ j ≤ n

In this subtask, we are free to place the fruits in any permutation that we want. If Benson only
takes fruits from the first k sections, we should ensure that he takes the k most expensive fruits.

This is possible by placing fruit n − k + 1 at section 1, fruit n − k + 2 at section 2 and so on,
with fruit n at section k. This gives us a cost of Cn−k+1 + Cn−k+2 + · · · + Cn. This can be
computed quickly using a suffix sum on Ci.

Time Complexity: O(N)

NOI 2022 National Olympiad in Informatics—Singapore 15

Subtask 3

Limits: N ≤ 200

Let’s take some optimal solution for a certain prefix k and consider what happens when we
place the some fruits. The fruits that we have yet to place can be divided into 2 categories,
those worse than the current best and those better than the current best (best meaning highest
tastiness).

We realise that the exact fruits that are worse than the current best don’t matter anymore, since
at this point all of them are simply filler fruits. Thus, we can represent the current state using
the number of sections we have filled so far and the value of the best fruit.

Thus, we let dp[x][v] be the maximum cost using the first x sections such that the best fruit used
is fruit v. Invalid states are set to −∞ and dp[0][0] = 0. There are 2 transitions:

• Ax ̸= −1:

In this case, the fruit at this section is fixed. Thus, the best fruit up to this point is no
worse than Ax and we should only consider v ≥ Ax.

If v = Ax, then the previous best fruit must be some fruit w < v, so dp[x][v] = Cv +
max (dp[x− 1][w]) across all w < v

If v > Ax, then the previous best fruit must be fruit v, so dp[x][v] = dp[x− 1][v]

• Ax = −1:

In this case, the fruit at this section is not fixed. If the current fruit is the best fruit, then
the total cost is Cv + dp[x− 1][w] where w is the previous best fruit. Otherwise the best
fruit had already been placed, so the number of fruits taken is dp[x− 1][v].

Thus dp[x][v] is the best of dp[x− 1][v] and Cv + dp[x− 1][w] across all w < v.

There are O(n2) states and O(N) transition, which gives us an O(N3) solution.

Time Complexity: O(N3)

Subtask 4

Limits: N ≤ 2000

We can speedup the transition from O(N) to O(1) by precomputing the prefix maximums
max (dp[x− 1][w]) for all w in O(N) time, and thus the solution runs in O(N2).

Time Complexity: O(N2)

NOI 2022 National Olympiad in Informatics—Singapore 16

Subtask 5

Limits: Ci = 1 for all 1 ≤ i ≤ n

Take an example test case of N = 13, A = {−1,−1, 5, 6,−1,−1, 7, 11,−1,−1, 10,−1,−1}.
The dp table is as follows (dp[x][v] is on the xth column from the left and the vth row from the
bottom)

1 2 2 2 5 6 6 6 8 9 9 9 9
1 2 2 2 5 6 6 6 8 8 8 8 -
- - - - - - - 7 7 7 7 - -
- - - - - - - - - - - - -
1 2 2 2 5 6 6 - - - - - -
1 2 2 2 5 5 5 - - - - - -
- - - - - - 5 - - - - - -
- - - 4 4 4 - - - - - - -
- - 3 - - - - - - - - - -
1 2 - - - - - - - - - - -
1 2 - - - - - - - - - - -
1 2 - - - - - - - - - - -
1 - - - - - - - - - - - -

If we look at the sections which are free (marked in bold), we see that if dp[x][v] and dp[x][v−1]
are valid, then

1. dp[x][v]− dp[x][v − 1] ≥ 0

2. dp[x][v]− dp[x][v − 1] ≤ 1

In fact, we can rigorously prove these observations. The non-decreasing condition can be shown
with some manipulation of the transition.

dp[x][v] = max(dp[x− 1][v], 1 + max
w<v

(dp[x− 1][w]))

≥ max(1 + dp[x− 1][v − 1], 1 + max
w<v−1

(dp[x− 1][w]))

≥ max(dp[x− 1][v − 1], 1 + max
w<v−1

(dp[x− 1][w]))

= dp[x][v − 1]

NOI 2022 National Olympiad in Informatics—Singapore 17

To prove the second condition, we first extend it to all columns (not just the sections that are
free) and use induction. In the 0th column (i.e. dp[0]), dp[0][0] = 0 and dp[0][v] = −∞ for all
v ≥ 1 so the condition is true.

For a fixed section x, if Ax is useless (i.e. never used even if we place the smallest possible
fruits in front), then dp[x][v] = dp[x− 1][v] for all v. Otherwise, dp[x][v] = dp[x− 1][v] for all
v > Ax and dp[x][v] = −∞ for all v < Ax. The condition is true for all v > Ax based on the
previous section, and is true for v = Ax trivially because dp[x][Ax − 1] is not a valid state.

For a free section x, notice that the transitions for dp[x][v] and dp[x][v − 1] differ in only 2
areas. The transition for dp[x][v] includes 1 + dp[x− 1][v − 1] instead of dp[x− 1][v − 1] and
includes dp[x− 1][v]. Since dp[x− 1][v]−dp[x− 1][v− 1] ≤ 1, we have max(dp[x− 1][v], 1+
dp[x − 1][v − 1]) − dp[x − 1][v − 1] ≤ 1. All other parameters in the max are the same, so
dp[x][v]− dp[x][v − 1] ≤ 1.

An immediate consequence of this observation is that the dp states look like ranges of identical
values that increment by 1 as we move up the column. Thus, instead of tracking the exact value
of each state, we can track the ranges of states that all have the same value.

Now we need to solve the problem of accurately modelling the transitions between columns
using these ranges. Consider the partial dp table below.

c+1 c+2 c+3
c+1 c+2 c+2
c+1 c+1 c+2

c c+1 c+1
c c c
- - -

We can make 2 observations.

• The first is that a range of values will increment together by moving up and right by 1
(e.g the range of c in the first column moves to the range of c+ 1 in the second column).

• The second is that a new range may need to be added at the lowest valid tastiness.

Thus our solution is as follows:

• Maintain a double-ended queue containing tuples of (section,value,lower bound), each
representing one of the ranges.

• Bottom or lower tuples refer to those representing dp states with lower tastiness values,
top or higher tuples refer to those representing dp states with higher tastiness values.

NOI 2022 National Olympiad in Informatics—Singapore 18

• The answer we want at each index is at the top of the deque.

• To process a fixed section, we pop ranges from the bottom of the deque and take a range
max, then add a new range (which may combine with another existing range)

• To process a free section, we check if any ranges at the top need to be popped out and
check if any new ranges need to be added at the bottom.

Since each range is added and removed once and there are at most O(N) ranges, adding and
removal of ranges is amortized O(N). Checking the answer is an O(1) computation since we
access the top of the deque, so this is also O(N) overall.

Time Complexity: O(N)

NOI 2022 National Olympiad in Informatics—Singapore 19

Subtask 6

To simplify the remainder of the editorial, we will do a number of preprocessing steps.

We can do a linear pass to eliminate all fixed fruits that will never be picked even if we use the
smallest possible free fruits at each section.

We can now rephrase the problem. Instead of having fixed fruits in the sections, we have n′

sections that are all free, and the n′ free fruits have tastiness from 1 to n′ based on their original
order. Ci is now equal to the cost of the free fruit with tastiness i.

The fixed fruits are offered to Benson after he passes a specific section, possibly multiple times
in a row. Each fixed fruit has a new tastiness, equal to the number of free fruits which originally
were less tasty than this fixed fruit.

Let n′ be the number of free fruits, and let us renumerate the free fruits to take on indices from
1 to n′. Also, he now picks a fixed fruit if its tastiness is at least the maximum in the basket
(free fruits continue to follow the strict inequality).

We let dp[x][v] be the maximum cost using the first x sections such that the tastiest fruit has
tastiness v without taking the fixed fruits offered at x. Bear in mind that this tastiest fruit
might not be a free fruit. For simplicity, we can take dp[0][0] = 0 and dp[0][v] = −∞ for all
1 ≤ v ≤ n′.

If x > v, then the state dp[x][v] does not make sense, as using any combination of x free fruits
will contain one with tastiness > v, so such states are invalid and will not be considered.

We can generalise the observation in Subtask 5 that adjacent dp[x][v] values can only differ by
at most 1 with the following claim: For all x, v where dp[x][v] and dp[x][v − 1] are valid
states, we have 0 ≤ dp[x][v]− dp[x][v − 1] ≤ Cv. This can be shown by modifying the proof
in Subtask 5 with the additional fact that Cv ≥ Cv−1.

Now consider the optimal configuration for dp[x][v]. The immediate consequence of this claim
is that if this configuration does not use any fixed fruit between section x − 1 and section x,
then the optimal transition is simply dp[x][v] = Cv + dp[x− 1][v− 1]. These transitions can be
chained together, similar to how the ranges in Subtask 5 move together.

Suppose the last fixed fruit that the configuration used was just before section x′ with tastiness
t, and after that last fixed fruit the total cost was c. We can compute dp[x][v] as

Cv + Cv−1 + · · ·+ Cmax(t+1,v+x′−x+1) + c

by chaining the optimal transitions together.

NOI 2022 National Olympiad in Informatics—Singapore 20

Letting pv = Cv + Cv−1 + · · ·+ C1, we get

dp[x][v] = pv − pmax(t,v+x′−x) + c

which not only allows O(1) computation on the fly, it also means that we no longer need to
explcitly store the dp states; we simply need to maintain the tuples of (c, x′, t) to compute the
cost. Let’s call these tuples bases.

We maintain a double-ended queue consisting of bases that cover at least one dp state at the
current section. Initially, this deque only contains the base (0, 0, 0). Free sections can be handled
similarly to that in Subtask 5; we truncate the top base if necessary, and add another base at the
bottom if necessary.

There are 4 steps to processing a fixed section x.

1. Compute new base:

This requires us to process each dp state with tastiness ≤ Ax. This can be done by
processing each base in the deque from bottom to top. Note that we only need to check
the highest possible tastiness dp state for each base since the dp values are non-decreasing.

2. Delete unusable / non-optimal bases:

Unusable bases are bases that cover a range of dp states that all have tastiness ≤ Ax.
Non-optimal bases are bases whose dp states have lower values than those provided by
the new base.

Since dp states are non-decreasing from bottom to top, these states are at the bottom of
the deque, and can be removed one by one.

3. Truncate bottom base:

When we add the new base, there may be a base that it does not entirely remove, i.e. only
a part of the dp states of that base are less than optimal.

Here, we can perform a binary search to determine where the cutoff point is. This takes
O(logN) time.

4. Add new base:

We push the new base to the bottom of the deque.

The computation of the new bases can be done concurrently with the removal of unusable bases.
Since the dp values within a base is non-decreasing, removing non-optimal bases can be done
in O(1) each by testing the highest dp state within that base.

All deque operations are O(N) overall, and we perform at most N binary searches. Hence, the
overall solution is O(N logN).

Time Complexity: O(N logN) with small constant

NOI 2022 National Olympiad in Informatics—Singapore 21

