## Problem A. Zero Sum

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
7 seconds
256 mebibytes

You are given a matrix $a$ of size $n \times(2 k+1)$, which contains integers, rows are numbered from 1 to $n$, and columns are numbered from $-k$ to $k$.

You need to choose the sequence of numbers $x_{1}, x_{2}, \ldots, x_{n}$, such that contraints ( $-k \leq x_{i} \leq k$ ) and $\left(x_{1}+x_{2}+\ldots+x_{n}=0\right)$ will hold, and, under this, the value of $a_{1, x_{1}}+a_{2, x_{2}}+\ldots+a_{n, x_{n}}$ will be as small as possible.

## Input

The first line contains two integers $n$ and $k(1 \leq n \leq 35000,1 \leq k \leq 3)$, separated by a space: the dimensions of the matrix $a$.
The following $n$ lines contain $(2 k+1)$ integers separated by a space: the $j$-th number in the $i$-th of these lines denotes $(j-k-1)$-th element of $i$-th row of the matrix $a\left(-10^{9} \leq a_{i, j-k-1} \leq 10^{9}\right)$.

## Output

Print one integer: the minimum possible value of the sum $a_{1, x_{1}}+a_{2, x_{2}}+\ldots+a_{n, x_{n}}$ under the constraints $\left(-k \leq x_{i} \leq k\right)$ and $\left(x_{1}+x_{2}+\ldots+x_{n}=0\right)$.

## Examples

| standard input |  |  |  |
| :--- | :--- | :--- | :--- |
| 3 | 1 |  | standard output |
| 3 | 14 | 15 |  |
| -3 | -5 | -35 |  |
| 2 | 71 | 82 | -19 |
| 5 | 2 |  |  |
| 1 | 2 | 5 | 14 |
| 1 | 2 | 3 | 5 |
| 1 | 2 | 4 | 8 |
| 1 | 16 |  |  |
| 1 | 2 | 3 | 4 |
| 1 | 2 | 6 | 24 |

## Note

In the first sample optimal solution is to choose sequence $0,1,-1$, which will give the required answer, which equals $15+(-35)+2=-19$.

## Problem B. MST

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

You are given an array $x_{1}, x_{2}, \ldots, x_{n}$.
Let's create an undirected graph on $n$ vertices, which is initially empty.
After that, for each pair $(u, v)$ such that $u<v$ let's add to the graph edge between vertices $u$ and $v$ with weight $x_{v}-x_{u}$.
Your goal is to find the weight of the minimum spanning tree in this graph.

## Input

The first line of input contains one integer $t(1 \leq t \leq 300000)$ : the number of test cases.
The first line of each test case contains one integer $n(1 \leq n \leq 300000)$ : the number of integers in the given array. The next line of each testcase contains $n$ space-separated integers $x_{1}, x_{2}, \ldots, x_{n}\left(-300000 \leq x_{i} \leq 300000\right)$ : the given array.
It is guaranteed that the sum of $n$ is at most 300000 .

## Output

For each test case one integer: the weight of the minimum spanning tree in the described graph.

## Example

|  |  | standard input |  | standard output |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2 |  |  |  | 4 |  |
| 5 |  |  |  | -35 |  |
| 1 | 2 | 3 | 4 | 5 |  |
| 3 |  |  |  |  |  |
| 10 | 45 | 10 |  |  |  |

## Problem C. Tree Circles

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

You have a tree on $n$ vertices, edges are numbered by distinct integers from 1 to $n-1$.
Let's call a circle from $v$ with radius $r$ a set of vertices in the connected component of $v$ if you will leave only edges with numbers $\leq r$.
You need to answer several queries on the given tree.
In each query you are given $k$ and $k$ vertices $v_{1}, v_{2}, \ldots, v_{k}$.
You need to find the number of ways to pick a radius for each given vertex, such that all circles won't intersect.
In other words, you need to calculate the number of tuples $\left(r_{1}, r_{2}, \ldots, r_{k}\right)\left(0 \leq r_{1}, r_{2}, \ldots, r_{k} \leq n-1\right)$ such that $\operatorname{circle}\left(v_{i}, r_{i}\right) \cap \operatorname{circle}\left(v_{j}, r_{j}\right)=\emptyset$ for $i \neq j$.
As the number may very big, you only need to find it modulo 998244353.

## Input

The first line of input contains one integer $n(2 \leq n \leq 300000)$ : the number of vertices in the given tree.
Next ( $n-1$ ) lines contain the description of edges, each line contain two integers $u_{i}, v_{i}\left(1 \leq u_{i}, v_{i} \leq n ; u_{i} \neq v_{i}\right)$ describing edge connecting vertices $u_{i}$ and $v_{i}$ with number $i$ in the tree.
It is guaranteed that the given graph is a tree.
The next line of input contains one integer $q(1 \leq q \leq n)$ : the number of queries.
Next $q$ lines contain the description of edges, each line contain one integer $k(1 \leq k \leq n)$, and $k$ distinct integers after, $v_{1}, v_{2}, \ldots, v_{k}\left(1 \leq v_{i} \leq n\right)$ : the current query.
It is guaranteed that the sum of $k$ is at most 300000 .

## Output

For each query output one integer: the number of tuples $\left(r_{1}, r_{2}, \ldots, r_{k}\right)\left(0 \leq r_{1}, r_{2}, \ldots, r_{k} \leq n-1\right)$ such that $\operatorname{circle}\left(v_{i}, r_{i}\right) \cap \operatorname{circle}\left(v_{j}, r_{j}\right)=\emptyset$ for $i \neq j$, modulo 998244353 .

## Example

| standard input |  |  |  |
| :--- | :--- | :--- | :--- |
| 3 |  | 2 | standard output |
| 1 | 2 |  | 4 |
| 2 | 3 |  |  |
| 2 |  | 3 | 3 |
| 3 | 1 | 3 |  |

## Problem D. Angle Beats 2.0

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 256 mebibytes |

You have a rectangular board consisting of $n \times m$ squares. Each square contains a character which is either "*" or ".".
A tromino is a figure formed by a square of the board, called the center, and two other squares, each sharing an edge with the center. A tromino is L-shaped if these two squares have a common vertex.
You can draw some disjoint L-shaped trominoes on the board. The center of an L-shaped tromino must contain "*", and each "*" should be a center of some tromino.
All non-center squares of all trominoes must contain ".".
Your goal is to find the number of ways to draw L-shaped trominoes under these constraints.
As the answer may very big, you only need to find it modulo 998244353.

## Input

The first line of input contains one integer $t(1 \leq t \leq 250000)$ : the number of test cases.
The first line of each test case contains two integers $n$ and $m$ : the number of rows and columns of the board ( $2 \leq n, m \leq 100$ ).
Each of the next $n$ lines contains $m$ characters, and each character is either "*" or ".". Together, these lines describe the board.
It is guaranteed that sum of $n \cdot m$ is at most 1000000 .

## Output

For each test case print one integer: the number of ways to draw L-shaped trominoes under given constraints.

## Example

| standard input | standard output |
| :---: | :---: |
| 3 | 4 |
| 33 | 1 |
| . . | 0 |
| .*. |  |
| $\cdots$ |  |
| *. |  |
| $\ldots$ |  |
| 33 |  |
| . . . ${ }^{*}$ |  |
| .*. |  |

## Problem E. LIS

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
7 seconds
256 mebibytes

You have four sequences of integers $a_{1}, a_{2}, \ldots, a_{n} ; b_{1}, b_{2}, \ldots, b_{n} ; x_{1}, x_{2}, \ldots, x_{n} ; y_{1}, y_{2}, \ldots, y_{n}$.
Let's build a directed graph, where the edge from $i$ to $j$ will be in the graph if $i<j$ and $a_{i} \cdot x_{j}+b_{i} \geq y_{j}$.
You need to find the longest path in this graph.

## Input

The first line of input contains one integer $t(1 \leq t \leq 300000)$ : the number of test cases.
The first line of each test case contains one integer $n(1 \leq n \leq 150000)$ : the number of integers in the sequences.
Each of the next $n$ lines contains four integers $a_{i}, b_{i}, x_{i}, y_{i}\left(0 \leq a_{i}, x_{i} \leq 300000 ; 0 \leq b_{i}, y_{i} \leq 10^{11}\right)$.
It is guaranteed that the total sum of $n$ is at most 300000 .

## Output

For each test case print one integer: the longest path in the described graph.

## Example

|  |  | standard input |  | standard output |
| :--- | :--- | :--- | :--- | :--- |
| 3 |  |  | 3 |  |
| 3 |  |  | 1 |  |
| 1 | 1 | 1 | 1 |  |
| 2 | 2 | 2 | 2 |  |
| 3 | 3 | 3 | 3 |  |
| 3 |  |  |  |  |
| 1 | 1 | 1 | 1 |  |
| 2 | 2 | 2 | 10 |  |
| 3 | 3 | 3 | 100 |  |
| 1 |  |  |  |  |
| 35 | 35 | 35 | 35 |  |

## Problem F. Good Coloring

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 256 mebibytes |

You have an undirected graph, each vertex is colored in one of $k$ possible colors, the graph is properly colored into $k$ colors, i.e two ends of any edge are colored in different colors.
Your goal is to find another (or maybe the same) coloring of this graph into $x$ colors, such that $x \leq k$, and there exists a path of length $x$, which contains all possible colors.
It is guaranteed that it is always possible.

## Input

The first line of input contains one integer $t(1 \leq t \leq 600000)$ : the number of test cases.
The first line of each test case contains three integers $n, m$ and $k$ : the number of vertices, edges, and the number of colors you are using of the graph $(1 \leq n \leq 300000 ; 0 \leq m \leq 300000 ; 1 \leq k \leq n)$.

The next line contains $n$ space-separated integers $c_{1}, c_{2}, \ldots, c_{n}\left(1 \leq c_{i} \leq k\right)$ : colors of vertices.
It is guaranteed that the given coloring is correct.
Each of the next $m$ lines contains two integers, $u$ and $v(1 \leq u, v \leq n ; u \neq v)$ : indices of vertices connected by edge. It is guaranteed that in each test case there are no multiple edges in the graph.
It is guaranteed that the sum of $n+m$ is at most 600000 .

## Output

For each test case output $n+1$ integers, $x(1 \leq x \leq k)$, $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq x\right)$ : new coloring.
This coloring should be proper, i.e two ends of any edge are colored in different colors.
Also for each test case in next line print $x$ integers $v_{1}, v_{2}, \ldots, v_{x}\left(1 \leq v_{i} \leq n\right)$, there should exists an edge between vertices $v_{i}$ and $v_{i+1}$, and all colors of vertices should be different, so $p_{v_{i}} \neq p_{v_{j}}$ for all pairs $1 \leq i<j \leq x$.

## Example

| standard input | standard output |
| :---: | :---: |
| 2 | 3321 |
| 333 | 123 |
| 123 | 2211 |
| 12 | 12 |
| 23 |  |
| 31 |  |
| 313 |  |
| 123 |  |
| 12 |  |

## Problem G. Circle Convertation

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

You have two strings of zeroes and ones, $s_{0}, s_{1}, \ldots, s_{n-1}$ and $t_{0}, t_{0}, \ldots, t_{n-1}$.
In one operation you can choose $i$, such that $s_{i}=s_{(i+1)} \bmod n$, and invert $s_{i}$ and $s_{(i+1)} \bmod n$. Invert $s_{i}$ means set new value of $s_{i}$ to ' 0 ' if it was equal to ' 1 ', and set it to ' 1 ' otherwise.
Your goal is to make $s_{i}=t_{i}$ for all $i$ in at most 100000 operations.
For each test in this problem, the solution exists. Note that for some pairs of strings you can't get one from other (for example " 0101 " and " 1010 "), but there are no such strings in the tests of this problem.

## Input

The first line of input contains a binary string $s$.
The second line of input contains a binary string $t$.
$2 \leq|s|=|t| \leq 100$.

## Output

In the first line print $m(0 \leq m \leq 100000)$ : the number of operations.
In the next line print $m$ integers $i_{1}, i_{2} \ldots, i_{m}\left(0 \leq i_{j} \leq n-1\right)$ : operations in the order in which you need to perform them. Note, that when you are doing operation on index $i, s_{i}$ should be equal to $s_{(i+1) \bmod n}$, and after this operation $s_{i}$ and $s_{(i+1)} \bmod n$ will be changed.
Note that you don't necessarily need to minimize $m$.
It is guaranteed that there is at least one solution. If there are several possible solutions, you can print any.

## Examples

| standard input | standard output |  |
| :--- | :--- | :--- |
| 000 | 1 |  |
| 011 | 1 |  |
| 0000 | 2 |  |
| 1111 | 0 |  |
|  | 2 |  |
| 110 | 2 |  |
| 011 | 0 |  |
|  | 1 |  |

## Problem H. Equal MEX

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 256 mebibytes |

You have an array $a_{1}, a_{2}, \ldots, a_{n}$.
You need to find the number of ways to split it into non-empty subsegments, such that all MEXes of these subsegments are equal. MEX of subsegment $[l \ldots r]$ is equal to minimal non-negative integer $x$, such that $x$ is not present at this segment.
As this number may be very big, you only need to output it modulo 998244353.

## Input

The first line of input contains one integer $t(1 \leq t \leq 300000)$ : the number of test cases.
The first line of each test case contains one integer $n(1 \leq n \leq 300000)$ : the number of integers in the given array. The next line of each testcase contains $n$ space-separated integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq n\right)$ : the given array.
It is guaranteed that the sum of $n$ is at most 300000 .

## Output

For each test case one integer: the number of ways to split a given array into non-empty subsegments with equal MEX, modulo 998244353.

## Example

|  | standard input |  | standard output |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 |  |  |  |  |  |  |
| 6 |  |  |  |  |  | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 |  |
| 5 |  |  |  |  |  |  |
| 0 | 1 | 0 | 1 | 0 |  |  |
| 4 |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 |  |  |  |
| 3 |  |  |  |  |  |  |
| 3 | 3 | 3 |  |  |  |  |

## Problem I. Cactus is Money

Input file: Output file: Time limit: Memory limit:
standard input standard output
2 seconds 256 mebibytes

A Cactus graph is a simple connected undirected graph where each edge lies in at most one simple cycle.
You have a cactus graph, each edge has two non-negative integer weights $a_{i}, b_{i}$.
Your goal is to find the spanning tree of given cactus with a minimum value of $\left(\sum a_{i}\right) \cdot\left(\sum b_{i}\right)$, where the sum is taken among all edges which are present in spanning tree.

## Input

The first line contains $n, m$, denoting the number of vertices and edges of the cactus graph. ( $1 \leq n \leq 50000,0 \leq m \leq 250000$ )
In the next $m$ lines, four integers $s, e, a_{i}, b_{i}$ denoting endpoints of the $i$-th edge and its weights are given. $\left(1 \leq s, e \leq n, s \neq e, 0 \leq a_{i}, b_{i} \leq 50000\right)$.
It is guaranteed that the graph is connected, it does not contain loops or multiple edges, and every edge belongs to at most one simple cycle.

## Output

Output one integer: minimum possible value of $\left(\sum a_{i}\right) \cdot\left(\sum b_{i}\right)$, where the sum is taken among all edges which are present in spanning tree.

## Example

| standard input |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 3 |  |  | 0 |
| 1 | 2 | 0 | 1000 |  |
| 2 | 3 | 0 | 1000 |  |
| 3 | 1 | 1 | 1 | standard output |

## Problem J. Good Permutations

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
7 seconds
256 mebibytes

Let's call a permutation of $n$ elements good, if there are exactly $m$ triples $i, j, k$ such that $1 \leq i<j<k \leq n$ and $p_{i}<p_{j}<p_{k}$.
You need to calculate the total number of inversions of all good permutations of $n$ elements, modulo 998244353 (prime).

## Input

The first line of input contains two integers $n$ and $m(1 \leq n \leq 100000,0 \leq m \leq 3)$.

## Output

Output one integer: the sum of the number of inversions of all permutations $p_{1}, p_{2}, \ldots, p_{n}$, such that there are exactly $m$ triples $i, j, k$ such that $1 \leq i<j<k \leq n$ and $p_{i}<p_{j}<p_{k}$, modulo 998244353 .

## Examples

| standard input | standard output |
| :--- | :--- |
| 20 | 1 |
| 30 | 9 |
| 40 | 55 |
| 50 | 290 |
| 42 | 3 |
| 52 | 98 |
| 62 | 1074 |
| 53 | 21 |
| 63 | 484 |
| 7 | 5430 |

## Problem K. Number Theory

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 256 mebibytes |

You are given a prime $p$.
For integer $x$, such that $0 \leq x<p$ let's call $f(x)$ the minimum non-negative integer $a$, such that there exists $b$, such that $\left(a^{2}+b^{2}\right) \bmod p=x$.
Your goal is to find $\max (f(0), f(1), \ldots, f(p-1))$.
It can be proved that for each prime $p$ and each integer $x$ you can find at least one pair $a, b$ such that $\left(a^{2}+b^{2}\right)$ $\bmod p=x \bmod p$.

## Input

The first line of input contains one integer $p\left(2 \leq p \leq 10^{5}\right)$.
It is guaranteed that $p$ is prime.

## Output

Print one integer: $\max (f(0), f(1), \ldots, f(p-1))$.

## Examples

| standard input | standard output |
| :--- | :--- |
| 2 | 0 |
| 3 | 1 |
| 5 | 2 |
| 7 | 2 |

## Problem L. Modulo Magic

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 256 mebibytes |

You have a positive integer $n$.
You need to find the number of different integers among $n \bmod 1, n \bmod 2, \ldots, n \bmod (n-1)$.

## Input

The first line of input contains one integer $n\left(2 \leq n \leq 10^{9}\right)$.

## Output

Print one integer: the number of different integers among $n \bmod 1, n \bmod 2, \ldots, n \bmod (n-1)$.

## Examples

| standard input |  |
| :--- | :--- |
| 2 | 1 |
| 3 | 2 |

