
CEOI 2022 – Day 1
July 26th 2022 Editorial

Editorial

Tasks, test data and solutions for CEOI 2022 were prepared by: Dominik Fistrić, Josip Klepec, Krešimir
Nežmah, Ivan Paljak and Paula Vidas. Implementation examples are given in attached source code files.

Task Abracadabra

Prepared by: Krešimir Nežmah and Dominik Fistrić

Preliminary observations

By looking at the numbers written on the face of each card from bottom to top, we can represent the
state of the deck at any time by a permutation of the numbers from 1 to n. Denote by riffle(L,R) the
function which takes as input two arrays of integers L and R, representing the cards in each hand, and
returns a new array representing the result of Tin’s riffle shuffle on L and R. This procedure can easily
be implemented in O(|L|+ |R|) by adding the cards one by one from L and R to the result. Therefore,
performing one riffle shuffle on a permutation representing the deck can be done in O(n).

After writing out a few examples, one can notice that it seems like the process of shuffling the deck
stabilizes at some point. That is, after some number of shuffles we reach a point where shuffling the deck
no longer changes it. As we will later see, the number of shuffles needed to reach this point is bounded by
n. Therefore, the answer for a query wont change if we set t = min(t, n). The intended solution for the
first subtask is to repeatedly shuffle the deck until we reach this point and store the state of the deck at
each point in time. After that, we can answer each query in O(1) by looking up the answer. The total
time complexity of such an approach is O(n2 + q).

Block structure

Let’s find a better way to describe how the function riffle(L,R) computes the result. We will divide L
and R into blocks in the following way: the first block starts at the first element of the array and ends
right before the smallest element that is larger than the first one. The second block then starts at this
element and ends right before the smallest element larger than it. This process continues until we reach
the end of the array. Notice that the maximum value in each block is precisely the front element of the
block, and the sequence of maximums of the blocks forms an increasing sequence.

The key observation is the following: instead of computing the result one element at a time, we can
compute it block by block, and the final result consists of these blocks placed next to each other, ordered
by the front element of the block. Indeed, if the front element of some block is larger than the front
element of some other block, then it is also larger than the rest of the elements in that block. Also, the
blocks will be sorted in the end because they are sorted initially and at each point the block with the
smaller front element is appended to the result. Note that the blocks will never merge together to form
a larger block, i.e. if we split the resulting array into blocks, we obtain precisely a permutation of the
starting blocks.

Now let’s look at a single shuffle operation with this view in mind. Divide the initial permutation into
blocks in the same way as described above. After splitting the permutation in half, some of the blocks
will be in the left half, some of them will be in the right half, and there will be at most one block which
is partially contained in both. If such a block exists, we’ll call it the middle block, and we’ll talk about
its left and right parts. Let L and R be the arrays containing the elements of the left and right halves,
respectively. If the middle block does not exist, the blocks of L are precisely the blocks of the permutation
which are in the left half, and the blocks of R are precisely the blocks from the right half. All blocks from
L have a smaller front element than all blocks from R, so after the shuffle the permutation will not change.
On the other hand, if the middle block exists, L will have one more additional block, namely, the left part

1 of 7

CEOI 2022 – Day 1
July 26th 2022 Editorial

of the middle block. R might have multiple additional blocks, since the right part of the middle block
need not be a block itself. Still, all elements from the right part of the middle block are smaller than the
front element of the next block, so the additional blocks in R will form a subdivision into multiple smaller
blocks of the right part of the middle block. Once we perform riffle(L,R), the blocks of L and R will
become sorted by their front elements. This wont affect the blocks that were fully contained in the right
half to begin with. It will, however, affect the blocks which make up the right part of the middle block,
because all of their front elements are smaller than the front element of the left part of the middle block.
Consequently, these blocks will be moved over somewhere to the left of that left part.

To summarize, we have the following:

• The permutation will stay the same after a shuffle if and only if the middle block does not exist.

• The positions of the blocks which are to the right of the middle block will not change.

• The left part of the middle block is its own block, the right part might have to be split into multiple
smaller blocks.

• These smaller blocks will move to the left of the left part of the middle block.

In particular, the middle block splits into at least two smaller blocks, so the total number of blocks
increases by at least one after each shuffle. Initially, there is at least one block, and in the end there are
at most n blocks, so the total number of shuffles is bounded by n− 1.
Challenge for the reader: find a case which achieves the maximum number of shuffles until stabilizing.

Implementation

It is possible to efficiently implement the procedure described above. We store each block using a triplet
of integers (v, l, r), where v represents the value at the front of the block, while l and r are the indices of
the ends of the block, from the point of view of the initial permutation. We keep all of the blocks in an
std::set, to ensure they are sorted according to v at all times. We also keep track of the total length of
all the blocks that are currently in the set. Note that if at any time there is a block which is completely
contained in the right half, we can remove it from the back of the set, since this block will never again
change its position.

When performing a shuffle we do the following:

• While there is a block completely in the right half, remove it.

• If the total length of the blocks in the set is n
2 , there is no middle block and we can stop.

• Otherwise, the back of the set now contains the middle block. Remove it from the set, split it into
smaller blocks and insert them back in the set.

What is left is to figure out how to obtain the initial set of blocks and how to efficiently split the middle
block into smaller blocks. For this we precompute for each position i in the initial permutation the position
nxt[i] representing the smallest index whose corresponding value is larger than the value at position i,
or n + 1 if there is no such position. This can be done in a standard way in O(n) using a stack. The
sequence i, nxt[i], nxt[nxt[i]], . . . determines the starting indices of the blocks starting from i. Using
this we can decompose the right part of the middle block in O(number of new blocks).

For the second subtask, all the queries have the same t value, so it is sufficient to run this process until
time t, at which point we can iterate over all the blocks in order and obtain the whole array. It is easy to
show that the total number of blocks that were in the set at one point or another is at most 2n, so the
total time complexity of obtaining what the array looks like after t shuffles is O(n log n). After this we
can answer all the queries in O(1).

2 of 7

CEOI 2022 – Day 1
July 26th 2022 Editorial

Supporting queries

We can input all the queries, sort them by their t value, and answer them offline. To do this we need to
maintain a data structure which keeps track of the currently active blocks, and is able to determine for an
arbitrary index i in which block is it currently contained in. This can be done directly with a balanced
binary search tree like splay or treap, but we’ll describe an easier way involving only a segment tree or a
fenwick tree.

First we run the process described above from the second subtask. That is, using a set we repeatedly
shuffle the permutation until we obtain the final ordering. We create a list of all the blocks that were
contained in the set at some point or another. We order this list according to the front value of each block.
Then we create a range-sum, point update segment tree on top of this array of blocks. Each node of the
segment tree will store the total length of all active blocks in its range.

We then run this process a second time, starting from the beginning again, but this time we additionally
keep track of the lengths of the blocks using the segment tree. Initially, each node of the segment tree
stores the value zero, because there are no active blocks. Every time a new block appears in the set, or is
deleted from the set, we make it active/inactive in the segment tree as well. That is, we update the point
at the corresponding index by adding the length of that block to that position.

To answer a query we have to be able to do the following: for a given value i, determine the index of the
first active block such that the prefix sum of the lengths of blocks up to that point is at least i. This is
a standard problem which can be solved either in O(log2 n) per query using a binary search along with
using the segment tree for querying the prefix sums. A better way to do it is to start from the root of the
segment tree and directly walk down to the desired index in O(log n). This solves subtasks 3 and/or 4,
depending on the efficiency of the implementation. The total time complexity is O((n + q) log n).

3 of 7

CEOI 2022 – Day 1
July 26th 2022 Editorial

Task Homework

Prepared by: Krešimir Nežmah and Dominik Fistrić

We can represent a valid expression by a binary tree with n leaves and n − 1 inner nodes. The leaves
correspond to question marks, and each inner node corresponds to one of the functions max or min. The
problem can now be rephrased as writing a permutation of numbers from 1 to n in the leaves, and
propagating these values to the root. The solution for every subtask involves parsing the string from the
input and converting it to such a binary tree.

The first subtask can be solved in O(n! · n) by trying out all the different permutation of {1, 2, . . . , n},
substituting it in the expression and evaluating it.

The second subtask can be solved with a bitmask dp. The state is dp[node][mask], which represents
the set of all possible values obtainable in this node if the allowed values are from the mask. For the
transition, we try to partition the mask into two submasks (one for each child), in all possible ways. The
time complexity is O(3n · n2), but in practice it is much faster because all states for which the number of
ones in the mask don’t match up with the number of nodes in the subtree can be discarded.

There is also a randomized solution which solves the second subtask. We make a guess that the set of
obtainable numbers forms an interval (this guess will later turn out to be true). Then we try to evaluate
as many different permutations as possible, and store the smallest and largest number we’ve come across.
We declare our final output to be the length of that interval. Challenge for the reader: prove that the
probability of success of such an approach is sufficiently high.

The third subtask is solved by looking at the longest sequence of nodes, starting from the root, which are
of the same type (all min or all max). Let’s say that there are k of them. The solution is then n− k. The
proof is left as an excersize to the reader.

Let’s look at a node and its subtree. Let S be a set of distinct numbers whose size equals the number of
leaves in the subtree. The full solution requires the observation that the set of number obtainable in this
node, using the numbers from S as the values for the leaves, forms an interval in S. Additionally, we must
figure out a way to combine the intervals of the left and right child to get the interval for the node itself.
The proof is inductive/recursive and at the same time describes a way to obtain the mentioned intervals,
allowing us to solve the problem with a tree dp.

Suppose that a node has a left child with L leaves, and a right child with R leaves. Also, let the interval
of possible values for the left child be [a, b] ⊆ [1, L], and [c, d] ⊆ [1, R] for the right child.

If the node is of type max, the lower limit for the interval of the node turns out to be a + c. Indeed, let’s
call the smallest a + c− 1 numbers from [1, L + R] small, and the rest of them large. Let’s say that the left
tree contains x small numbers, and the right subtree contains y small numbers. Since x + y = a + c− 1,
at least one of x < a and y < b must hold. With out loss of generality assume that x < a. Now the a-th
smallest number in the left subtree is large, so the maximum of the left and right subtrees will also be
large. This shows that the node value is at least a + c. This value is also obtainable: put the numbers
[1 + c, L + c] in the left subree, and the rest of them in right subtree. We can make it so that the value of
the left subtree turns out to be a + c, and the value of the right subtree is c.

If the node is of type min, the lower limit will be min(a, c). This can be shown in a similar way to what is
described above. This time, the small numbers will be the ones smaller than min(a, c), and the rest will
be large. The same type of argument shows that the node value is at least min(a, c). If a < c, this can be
obtained by putting [1, L] in the left subtree, and [L + 1, L + R] in the right subtree. The case where
a ≥ c is similar.

We can show a similar thing for the upper limit. If the node is of type max, the upper limit is max(b +
R, d + L), and if it is of type min, it is b + d− 1. To prove that the values in between are obtainable, we
just have to slightly alter the way of distributing the numbers in the left and right subtrees, similar to the
constructions for achieving the bound. The total time complexity is O(n).

4 of 7

CEOI 2022 – Day 1
July 26th 2022 Editorial

Task Prize

Prepared by: Ivan Paljak and Josip Klepec

Setup

Summarization of the task is somehow choosing the K node labels and then K − 1 queries such that they
uniquely determine a tree.

Algorithm 1 Choose subset of K node labels
N ← size of trees T1 and T2
K ← size of subset od node labels to choose
P1 ← preorder of T1
S ← first K node labels with respect to preorder P1 in tree T1

The subset S of node labels forms a connected subgraph in tree T1. In tree T2 it is just some arbitrary
subset of nodes.

Algorithm 2 Asking the queries
P2 ← preorder of T2
s← array of length K which values are the values from S sorted with respect to P2
for i = 1, 2, . . . , K − 1 do

Ask query for node labels si and si+1
end for

Each query may also give some lowest common ancestor which is not in S.

We define S1 and S2 as subset of nodes in respective trees as union of S and lowest common ancestors
that appear in queries.

Lemma 0.1. Si can be formed into a tree structure. Furthermore, S1 forms a connected subgraph in tree
T1 but it isn’t relevant for the rest of the algorithm.

We will describe the algorithm for making such small tree. It can be applied to both T1 and T2.

Algorithm 3 Forming trees
V ← Si sorted with respect to preorder of respective tree.
nodes← empty stack
for each v ∈ V do

while stack is not empty AND lca(v, stack.top()) 6= stack.top() do
pop from stack

end while
if stack is not empty then

make v child of the node on top of the stack
end if
push v to top of the stack

end for

Now for this trees we want to reconstruct weights of edges. For each tree we have 2× (K − 1) paths we
know the length of. Some may be redundant.

Lemma 0.2. Those paths are such that they uniquely determine the tree.

5 of 7

CEOI 2022 – Day 1
July 26th 2022 Editorial

The proof is not too hard so we won’t go into too much detail. Firstly, imagine we construct a graph as
described in section for Full Points (see section couple lines below)..

Now, all we need to prove is that that graph is connected. There is no need to prove that the given set of
queries don’t give contradiction because we can relly on the authentication of the interactor.

We can prove the connectivity by analyzing how we constructed the queries. The connectivity becomes
very obvious very quickly after we realize that we first sorted the node labels and then asked of adjecent
ones. Every pair of adjecent node labels being connected means the whole set is.

Subtask 3

Even thoough it is not necessary for full points we can use Gaussian elimination to solve this subtask.
Every query forms some equation (with variables being edge weights in respective trees). Now we get two
linear systems, one for each tree and we just solve each independently.

https://cp-algorithms.com/linear_algebra/linear-system-gauss.html

Subtask 4

It is not hard to modify algorithm for constructing the small tree to reconstruct the weights as well if
we our queries are also sorted by the preorder. But it only holds for the second tree. To achieve this for
both trees we need to find a set of node labels such that they can be ordered in a way that they form a
monotonic sequence with respect to the preorder in the first tree, but also in the second tree.

One could always choose such subset because K2 ≤ N holds.

If we order node labels with respect to preorder in tree T1 and look at the sequence of their preordering
positions in the tree T2. We can find a monotonic subsequence of length K.

Theorem 0.3 (Erdos-Szekeres). For given positive natural numbers s,r, any sequence of distinct real
numbers whose length is at least N = s r + 1 contains a monotonically increasing subsequence of length s
+ 1 or a monotonically decreasing subsequence of length r + 1 (or both).

Full Points

Method 1

For a rooted tree we denote d(x) as length of the path that starts at the root of the tree and ends at x.

Then our queries give equations of the form

d(xi)− d(yi) = wi

Now, we construct a weighted directed graph by adding an edge from yi to xi with weight wi and an edge
a reverse edge with negative weight −wi.

Now to find d(x) we just find the length of the path from root to x in our new graph using dfs. Such
path is guaranteed to exist because of the structure of queries.

When we reconstructed d(x) for every x it is easy to output the answers.

This gives us an algorithm with complexity O(K + N log N)

6 of 7

https://cp-algorithms.com/linear_algebra/linear-system-gauss.html

CEOI 2022 – Day 1
July 26th 2022 Editorial

Method 2

Alternatively, one could solve the system of equations by using Gaussian elimination faster by observing
that each equations forms a path in a tree. Further more a path that from some node to the root of the
tree (meaning lca of endpoints of the path is always on of them).

Algorithm 4 Algorithm
while Tree has more than one vertex do

v ← arbitrary leaf that is not the root.
eq ← path from that leaf (equation) that is the shortest.
substract equation eq from every other equation that also has leaf v as endpoint.
after substraction equations still form a path, just a different one.

end while
After we have finished the elimination we backtrack to get the desired weights

At first this gives us complexity O(K2 + N log N), but it can be sped up to O(K log2 K + N log N) by
keeping the set of equations that begin at every nodes and merging those sets when substraction equations.
If we merge the two sets such that we move everything from smaller set to larger we get the desired
complexity. It is convinient to keep equations in stl Set structure to get the minimum path.

7 of 7

