
Polish Collegiate Programming Contest 2021 Editorial

Jagiellonian University

7th November 2021

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 1 / 60

Problem H Hidden password

Problem H
Hidden password

Author: Krzysztof Maziarz

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 2 / 60

Problem H Hidden password

We are given string H1 and we know that there exists string H2 : H2 6= H1
and integer d : 0 < d < 26 such that Caesar cipher with shift d transforms
H1 into H2 and H2 into H1.

We see that after double encryption H1 transforms into itself, and because
H1 6= H2 it follows that d must be equal to 13. This information is
sufficient for obtaining H2 as it is just H1 encrypted with shift 13 Caesar
ciper.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 3 / 60

Problem H Hidden password

We are given string H1 and we know that there exists string H2 : H2 6= H1
and integer d : 0 < d < 26 such that Caesar cipher with shift d transforms
H1 into H2 and H2 into H1.

We see that after double encryption H1 transforms into itself, and because
H1 6= H2 it follows that d must be equal to 13. This information is
sufficient for obtaining H2 as it is just H1 encrypted with shift 13 Caesar
ciper.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 3 / 60

Problem D Divided mechanism

Problem D
Divided mechanism

Author: Daniel Goc

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 4 / 60

Problem D Divided mechanism

Task

We are given two rectilinear shapes on the plane and a sequence of
instructions telling, that we should move one of them either up, down, left
or right until it hits the other shape. We need to decide, if during the
process we were able to move that part arbitrarily away from the other
shape.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 5 / 60

Problem D Divided mechanism

Both figures consist of number of cells small enough to bruteforce the
simulation of the whole process.

We move the part one by one unit, until we can. If this machine part got
far enough from the other, we can state that the figures have been
decoupled.

To simplify the implementation, we can store the cells of the stationary
part in the input array, and keep the cells of the moving part, for example,
in a list.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 6 / 60

Problem D Divided mechanism

Both figures consist of number of cells small enough to bruteforce the
simulation of the whole process.

We move the part one by one unit, until we can. If this machine part got
far enough from the other, we can state that the figures have been
decoupled.

To simplify the implementation, we can store the cells of the stationary
part in the input array, and keep the cells of the moving part, for example,
in a list.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 6 / 60

Problem D Divided mechanism

Both figures consist of number of cells small enough to bruteforce the
simulation of the whole process.

We move the part one by one unit, until we can. If this machine part got
far enough from the other, we can state that the figures have been
decoupled.

To simplify the implementation, we can store the cells of the stationary
part in the input array, and keep the cells of the moving part, for example,
in a list.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 6 / 60

Problem L Lemurs

Problem L
Lemurs

Author: Daniel Goc

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 7 / 60

Problem L Lemurs

Task

On a n×m map, there are some cells inhabited by lemurs. Each lair has a
foraging area – every cell not further than k cells in taxicab metric from it.
Given cells, in which lemurs are foraging, we have to decide, if there exists
specification of lairs location corresponding to that foraging area.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 8 / 60

Problem L Lemurs

Let’s note, that if lemurs are not foraging somewhere, then any lair cannot
be located closer or with distance equal to k from that cell. Let’s cross out
all such cells from the map, for example using BFS.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 9 / 60

Problem L Lemurs

Can we place lemur lairs on the remaining cells, so that every marked cell is
reachable from them? Anyhow we place them, the foraging area generated
by them won’t be ”too large”, it could only not span all the needed cells.

Therefore, we can wlog put lairs at every non-crossed out cells – such lair
won’t be ever inconsistent with our data. We place lairs everywhere, where
it is possible and examine their total range – again, we can use BFS for
that part, which gives linear solution to the whole problem.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 10 / 60

Problem K Kitten and Roomba

Problem K
Kitten and Roomba

Author: Krzysztof Maziarz

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 11 / 60

Problem K Kitten and Roomba

Task

We are given a tree of size n and a sequence a1, a2, ..., am of vertices that
Roomba will visit (in that order). Initially, a kitten is sleeping in vertex c .
When Roomba enters vertex with a cat, it will wake up and escape to a
randomly chosen, neighbouring vertex. Calculate the expected number of
times the kitten will be woken up by the robot.

Limits: n ≤ 1 000 000, m ≤ 5 000 000.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 12 / 60

Problem K Kitten and Roomba

Task

We are given a tree of size n and a sequence a1, a2, ..., am of vertices that
Roomba will visit (in that order). Initially, a kitten is sleeping in vertex c .
When Roomba enters vertex with a cat, it will wake up and escape to a
randomly chosen, neighbouring vertex. Calculate the expected number of
times the kitten will be woken up by the robot.

Limits: n ≤ 1 000 000, m ≤ 5 000 000.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 12 / 60

Problem K Kitten and Roomba

For every vertex v we will keep track of probability p[v] that the cat is
currently in this vertex. Initially we have p[c] = 1.0.

When Roomba enters vertex v , we add p[v] to the result, we update
probabilities for all dv neighbours by adding p[v]

dv
, and finally, we set

p[v] = 0.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 13 / 60

Problem K Kitten and Roomba

For every vertex v we will keep track of probability p[v] that the cat is
currently in this vertex. Initially we have p[c] = 1.0.

When Roomba enters vertex v , we add p[v] to the result, we update
probabilities for all dv neighbours by adding p[v]

dv
, and finally, we set

p[v] = 0.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 13 / 60

Problem K Kitten and Roomba

If we implement it naively, then the operation of adding to v ’s neighbours
will take O(dv) time, which is too much (the whole algorithm may take
O(nm) time).

To optimize it, for each vertex v we will keep two values: p[v] and lazy [v],
where lazy [v] is the value that we want to lazily add to v ’s children. To
calculate the probability that the kitten is in the vertex u we will check
value of p[u] + lazy [parent[u]].

Now, adding to the neighbours consists of just two operations: adding p[v]
dv

to lazy [v] and p[parent[v]].

Complexity: O(n +m).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 14 / 60

Problem K Kitten and Roomba

If we implement it naively, then the operation of adding to v ’s neighbours
will take O(dv) time, which is too much (the whole algorithm may take
O(nm) time).

To optimize it, for each vertex v we will keep two values: p[v] and lazy [v],
where lazy [v] is the value that we want to lazily add to v ’s children. To
calculate the probability that the kitten is in the vertex u we will check
value of p[u] + lazy [parent[u]].

Now, adding to the neighbours consists of just two operations: adding p[v]
dv

to lazy [v] and p[parent[v]].

Complexity: O(n +m).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 14 / 60

Problem K Kitten and Roomba

If we implement it naively, then the operation of adding to v ’s neighbours
will take O(dv) time, which is too much (the whole algorithm may take
O(nm) time).

To optimize it, for each vertex v we will keep two values: p[v] and lazy [v],
where lazy [v] is the value that we want to lazily add to v ’s children. To
calculate the probability that the kitten is in the vertex u we will check
value of p[u] + lazy [parent[u]].

Now, adding to the neighbours consists of just two operations: adding p[v]
dv

to lazy [v] and p[parent[v]].

Complexity: O(n +m).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 14 / 60

Problem K Kitten and Roomba

If we implement it naively, then the operation of adding to v ’s neighbours
will take O(dv) time, which is too much (the whole algorithm may take
O(nm) time).

To optimize it, for each vertex v we will keep two values: p[v] and lazy [v],
where lazy [v] is the value that we want to lazily add to v ’s children. To
calculate the probability that the kitten is in the vertex u we will check
value of p[u] + lazy [parent[u]].

Now, adding to the neighbours consists of just two operations: adding p[v]
dv

to lazy [v] and p[parent[v]].

Complexity: O(n +m).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 14 / 60

Problem J Jungle Trail

Problem J
Jungle Trail

Author: Krzysztof Maziarz

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 15 / 60

Problem J Jungle Trail

Task

We are given a n x m grid. Each square is either empty, blocked
(impassable) or contains a den of snakes, either poisonous or benign (not
poisonous).

We can tap a column/row. In that case all poisonous snakes in this
column/row are turned to benign, and vice versa.

We have to tap some of the columns/rows, so that we can get from
top-left corner, to the bottom-right one, moving only down or right, and
visiting only empty squares or squares with benign snakes.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 16 / 60

Problem J Jungle Trail

If there is no path from the top-left corner, to the bottom-right one that
goes through non-blocked squares, then the answer is obviously “NO“. If
there is such a path, we will show that the answer is always “YES“.

Key observation: in every step the path visits a new row or a new column.

If we visit a square that contains poisonous snakes we can tap either the
current column or row, so the current square turns into a den of benign
snakes, and the squares that we have already visited remain untouched.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 17 / 60

Problem J Jungle Trail

If there is no path from the top-left corner, to the bottom-right one that
goes through non-blocked squares, then the answer is obviously “NO“. If
there is such a path, we will show that the answer is always “YES“.

Key observation: in every step the path visits a new row or a new column.

If we visit a square that contains poisonous snakes we can tap either the
current column or row, so the current square turns into a den of benign
snakes, and the squares that we have already visited remain untouched.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 17 / 60

Problem J Jungle Trail

If there is no path from the top-left corner, to the bottom-right one that
goes through non-blocked squares, then the answer is obviously “NO“. If
there is such a path, we will show that the answer is always “YES“.

Key observation: in every step the path visits a new row or a new column.

If we visit a square that contains poisonous snakes we can tap either the
current column or row, so the current square turns into a den of benign
snakes, and the squares that we have already visited remain untouched.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 17 / 60

Problem C Cake

Problem C
Cake

Author: Krzysztof Maziarz

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 18 / 60

Problem C Cake

Task

We are given two arrays 2× n of integers. We want to transform the
second one into the first one by preforming the operation: rotate a 2× 2
square by 180 degrees. Compute the minimum number of operations
required or decide that it is impossible.

Limits: n ≤ 500 000.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 19 / 60

Problem C Cake

Task

We are given two arrays 2× n of integers. We want to transform the
second one into the first one by preforming the operation: rotate a 2× 2
square by 180 degrees. Compute the minimum number of operations
required or decide that it is impossible.

Limits: n ≤ 500 000.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 19 / 60

Problem C Cake

Rotation by 180 degrees corresponds to swapping t[0][i] with t[1][i + 1]
and t[1][i] with t[0][i + 1] for some i .

Let’s swap t[0][i] and t[1][i] for even i (in both arrays). After that change
a rotation by 180 degrees corresponds to just swapping two consecutive
columns.

The problem simplifies to: given a sequence of pairs, transform it into
another sequence by swapping consecutive elements.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 20 / 60

Problem C Cake

Rotation by 180 degrees corresponds to swapping t[0][i] with t[1][i + 1]
and t[1][i] with t[0][i + 1] for some i .

Let’s swap t[0][i] and t[1][i] for even i (in both arrays). After that change
a rotation by 180 degrees corresponds to just swapping two consecutive
columns.

The problem simplifies to: given a sequence of pairs, transform it into
another sequence by swapping consecutive elements.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 20 / 60

Problem C Cake

Rotation by 180 degrees corresponds to swapping t[0][i] with t[1][i + 1]
and t[1][i] with t[0][i + 1] for some i .

Let’s swap t[0][i] and t[1][i] for even i (in both arrays). After that change
a rotation by 180 degrees corresponds to just swapping two consecutive
columns.

The problem simplifies to: given a sequence of pairs, transform it into
another sequence by swapping consecutive elements.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 20 / 60

Problem C Cake

Let’s enumerate pairs in the target sequence with the numbers 1, 2, ..., n
(we use all numbers even if there are duplicates in the sequence).

If we enumerate pairs in the origin sequence with the numbers
corresponding to them in the target sequence (be careful with duplicates),
then the answer is number of inversions in a sequence (it is well known
problem).

We can count the inversions using merge sort, segment tree or indexed set.
Complexity O(n log n).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 21 / 60

Problem C Cake

Let’s enumerate pairs in the target sequence with the numbers 1, 2, ..., n
(we use all numbers even if there are duplicates in the sequence).

If we enumerate pairs in the origin sequence with the numbers
corresponding to them in the target sequence (be careful with duplicates),
then the answer is number of inversions in a sequence (it is well known
problem).

We can count the inversions using merge sort, segment tree or indexed set.
Complexity O(n log n).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 21 / 60

Problem C Cake

Let’s enumerate pairs in the target sequence with the numbers 1, 2, ..., n
(we use all numbers even if there are duplicates in the sequence).

If we enumerate pairs in the origin sequence with the numbers
corresponding to them in the target sequence (be careful with duplicates),
then the answer is number of inversions in a sequence (it is well known
problem).

We can count the inversions using merge sort, segment tree or indexed set.
Complexity O(n log n).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 21 / 60

Problem F Fence

Problem F
Fence

Author: Krzysztof Maziarz

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 22 / 60

Problem F Fence

Task

We are given a sequence a1, a2, . . . , an. For a fixed integer b we split all
the ai ’s into bai−1b c copies of a number b and ((ai − 1) mod b) + 1.

Example: For a = [4, 5, 6] and b = 2 we get [2, 2, 2, 2, 1, 2, 2, 2].

For every b compute the sum of elements with odd indices in the resulting
sequence.
Limits:

∑
ai ≤ 106.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 23 / 60

Problem F Fence

Task

We are given a sequence a1, a2, . . . , an. For a fixed integer b we split all
the ai ’s into bai−1b c copies of a number b and ((ai − 1) mod b) + 1.

Example: For a = [4, 5, 6] and b = 2 we get [2, 2, 2, 2, 1, 2, 2, 2].

For every b compute the sum of elements with odd indices in the resulting
sequence.
Limits:

∑
ai ≤ 106.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 23 / 60

Problem F Fence

Task

We are given a sequence a1, a2, . . . , an. For a fixed integer b we split all
the ai ’s into bai−1b c copies of a number b and ((ai − 1) mod b) + 1.

Example: For a = [4, 5, 6] and b = 2 we get [2, 2, 2, 2, 1, 2, 2, 2].

For every b compute the sum of elements with odd indices in the resulting
sequence.
Limits:

∑
ai ≤ 106.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 23 / 60

Problem F Fence

It turns out that to compute the answer we only need three values:

[5, 4, 3, 2, 1]
Number of elements in the sequence → 5.
Sum of elements with odd indices → 9.
Sum of elements with even indices → 6.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 24 / 60

Problem F Fence

It turns out that to compute the answer we only need three values:

[5, 4, 3, 2, 1]

Number of elements in the sequence → 5.
Sum of elements with odd indices → 9.
Sum of elements with even indices → 6.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 24 / 60

Problem F Fence

It turns out that to compute the answer we only need three values:

[5, 4, 3, 2, 1]
Number of elements in the sequence → 5.

Sum of elements with odd indices → 9.
Sum of elements with even indices → 6.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 24 / 60

Problem F Fence

It turns out that to compute the answer we only need three values:

[5, 4, 3, 2, 1]
Number of elements in the sequence → 5.
Sum of elements with odd indices → 9.

Sum of elements with even indices → 6.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 24 / 60

Problem F Fence

It turns out that to compute the answer we only need three values:

[5, 4, 3, 2, 1]
Number of elements in the sequence → 5.
Sum of elements with odd indices → 9.
Sum of elements with even indices → 6.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 24 / 60

Problem F Fence

Given b we can compute the above values for a split of ai in O(1).

Let’s build a segment tree over the sequence.
In every node we will keep the three values for the corresponding segment.
It is easy to compute the values for a node given the values in its children.

Iterating over b = 1 . . . we need to update only leaves with corresponding
ai ≥ b. The total number of updates equals

∑n
i=1 ai which yields the

O((
∑n

i=1 ai) · log(n)) complexity.

Bonus: solve it in O(
∑n

i=1 ai).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 25 / 60

Problem F Fence

Given b we can compute the above values for a split of ai in O(1).
Let’s build a segment tree over the sequence.

In every node we will keep the three values for the corresponding segment.
It is easy to compute the values for a node given the values in its children.

Iterating over b = 1 . . . we need to update only leaves with corresponding
ai ≥ b. The total number of updates equals

∑n
i=1 ai which yields the

O((
∑n

i=1 ai) · log(n)) complexity.

Bonus: solve it in O(
∑n

i=1 ai).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 25 / 60

Problem F Fence

Given b we can compute the above values for a split of ai in O(1).
Let’s build a segment tree over the sequence.
In every node we will keep the three values for the corresponding segment.
It is easy to compute the values for a node given the values in its children.

Iterating over b = 1 . . . we need to update only leaves with corresponding
ai ≥ b. The total number of updates equals

∑n
i=1 ai which yields the

O((
∑n

i=1 ai) · log(n)) complexity.

Bonus: solve it in O(
∑n

i=1 ai).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 25 / 60

Problem F Fence

Given b we can compute the above values for a split of ai in O(1).
Let’s build a segment tree over the sequence.
In every node we will keep the three values for the corresponding segment.
It is easy to compute the values for a node given the values in its children.

Iterating over b = 1 . . . we need to update only leaves with corresponding
ai ≥ b. The total number of updates equals

∑n
i=1 ai which yields the

O((
∑n

i=1 ai) · log(n)) complexity.

Bonus: solve it in O(
∑n

i=1 ai).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 25 / 60

Problem F Fence

Given b we can compute the above values for a split of ai in O(1).
Let’s build a segment tree over the sequence.
In every node we will keep the three values for the corresponding segment.
It is easy to compute the values for a node given the values in its children.

Iterating over b = 1 . . . we need to update only leaves with corresponding
ai ≥ b. The total number of updates equals

∑n
i=1 ai which yields the

O((
∑n

i=1 ai) · log(n)) complexity.

Bonus: solve it in O(
∑n

i=1 ai).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 25 / 60

Problem I Interesting numbers

Problem I
Interesting numbers

Author: Team work

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 26 / 60

Problem I Interesting numbers

Statement

A sequence of integers (a1, a2, . . . an) and a number k are given. Let’s
consider a graph in which vertices i and j are connected iff ai ⊕ aj ≤ k.
We are asked to find the size of a maximum clique in this graph.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 27 / 60

Problem I Interesting numbers

Lets solve the problem using recurrence.

How to solve the problem for a fixed k and a sequence of integers ai ,
where ai ∈ [0, 2g)?

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 28 / 60

Problem I Interesting numbers

Lets solve the problem using recurrence.
How to solve the problem for a fixed k and a sequence of integers ai ,
where ai ∈ [0, 2g)?

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 28 / 60

Problem I Interesting numbers

Case g = 0. The problem is trivial.

Case k < 2g−1. If ai and aj differ on the (g − 1)-th bit, then there is no
edge between them, so we can independently solve the problem for the
ranges: [0, 2g−1) and [2g−1, 2g).

Case k ≥ 2g−1. If ai and aj don’t differ on the (g − 1)-th bit, then there
exists an edge between them, so an edge may not exist only if ai < 2g−1

and aj ≥ 2g−1 (i.e. ai and aj differ on the (g − 1)-th bit).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 29 / 60

Problem I Interesting numbers

Case g = 0. The problem is trivial.

Case k < 2g−1. If ai and aj differ on the (g − 1)-th bit, then there is no
edge between them, so we can independently solve the problem for the
ranges: [0, 2g−1) and [2g−1, 2g).

Case k ≥ 2g−1. If ai and aj don’t differ on the (g − 1)-th bit, then there
exists an edge between them, so an edge may not exist only if ai < 2g−1

and aj ≥ 2g−1 (i.e. ai and aj differ on the (g − 1)-th bit).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 29 / 60

Problem I Interesting numbers

Case g = 0. The problem is trivial.

Case k < 2g−1. If ai and aj differ on the (g − 1)-th bit, then there is no
edge between them, so we can independently solve the problem for the
ranges: [0, 2g−1) and [2g−1, 2g).

Case k ≥ 2g−1. If ai and aj don’t differ on the (g − 1)-th bit, then there
exists an edge between them, so an edge may not exist only if ai < 2g−1

and aj ≥ 2g−1 (i.e. ai and aj differ on the (g − 1)-th bit).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 29 / 60

Problem I Interesting numbers

We have two cliques such that some of the vertices of these cliques are
connected. We can solve this problem in a few different ways:

We can solve this problem applying recurrence. Total complexity is
O(n log(maxiai)).

Another approach is to notice that now we are looking for the maximum
independent set in a bipartite graph.

Kőnig theorem: Size of a maximum independent set equals |V | minus
maximum matching in bipartite graphs.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 30 / 60

Problem I Interesting numbers

We have two cliques such that some of the vertices of these cliques are
connected. We can solve this problem in a few different ways:

We can solve this problem applying recurrence. Total complexity is
O(n log(maxiai)).

Another approach is to notice that now we are looking for the maximum
independent set in a bipartite graph.

Kőnig theorem: Size of a maximum independent set equals |V | minus
maximum matching in bipartite graphs.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 30 / 60

Problem I Interesting numbers

We have two cliques such that some of the vertices of these cliques are
connected. We can solve this problem in a few different ways:

We can solve this problem applying recurrence. Total complexity is
O(n log(maxiai)).

Another approach is to notice that now we are looking for the maximum
independent set in a bipartite graph.

Kőnig theorem: Size of a maximum independent set equals |V | minus
maximum matching in bipartite graphs.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 30 / 60

Problem I Interesting numbers

We have two cliques such that some of the vertices of these cliques are
connected. We can solve this problem in a few different ways:

We can solve this problem applying recurrence. Total complexity is
O(n log(maxiai)).

Another approach is to notice that now we are looking for the maximum
independent set in a bipartite graph.

Kőnig theorem: Size of a maximum independent set equals |V | minus
maximum matching in bipartite graphs.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 30 / 60

Problem I Interesting numbers

In order to find the matching we can either modify matching algorithm to
make it work efficiently for this specific bipartite graph...

or use a segment tree to compress the graph and then find the maximum
flow in the resulting graph using any reasonable flow algorithm (i.e. Dinic).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 31 / 60

Problem I Interesting numbers

In order to find the matching we can either modify matching algorithm to
make it work efficiently for this specific bipartite graph...

or use a segment tree to compress the graph and then find the maximum
flow in the resulting graph using any reasonable flow algorithm (i.e. Dinic).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 31 / 60

Problem A AMPPZ in the times of disease

Problem A
AMPPZ in the times of disease

Author: Krzysztof Maziarz

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 32 / 60

Problem A AMPPZ in the times of disease

Task

Partition n points on the plane into k (non-empty) groups, such that the
longest distance between points inside the same group is less than the
shortest distance between points from different groups.

Note: you can assume, that the solution always exists!

Limits: n ≤ 2 000 000, k ≤ 20.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 33 / 60

Problem A AMPPZ in the times of disease

Task

Partition n points on the plane into k (non-empty) groups, such that the
longest distance between points inside the same group is less than the
shortest distance between points from different groups.

Note: you can assume, that the solution always exists!

Limits: n ≤ 2 000 000, k ≤ 20.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 33 / 60

Problem A AMPPZ in the times of disease

Task

Partition n points on the plane into k (non-empty) groups, such that the
longest distance between points inside the same group is less than the
shortest distance between points from different groups.

Note: you can assume, that the solution always exists!

Limits: n ≤ 2 000 000, k ≤ 20.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 33 / 60

Problem A AMPPZ in the times of disease

Solution 1:

Take any point x1, wlog add it to the group 1.

Let x2 be the farthest point from x1 (in case of draws select any). It can
be shown, that x2 has to be in the different group than x1, so let it be the
group 2.

In general: if we have assigned points x1, ..., xi into groups (respectively)
1, . . . , i so far, then xi+1, which maximizes minimal distance to any of
x1, ..., xi has to go into a new group.

At the end, we assign each of the remaining n − k points into a group
represented by the nearest from x1, ..., xk .

Naive implementation achieves O(nk2) complexity, but it can be easily
sped up to O(nk).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 34 / 60

Problem A AMPPZ in the times of disease

Solution 1:

Take any point x1, wlog add it to the group 1.

Let x2 be the farthest point from x1 (in case of draws select any). It can
be shown, that x2 has to be in the different group than x1, so let it be the
group 2.

In general: if we have assigned points x1, ..., xi into groups (respectively)
1, . . . , i so far, then xi+1, which maximizes minimal distance to any of
x1, ..., xi has to go into a new group.

At the end, we assign each of the remaining n − k points into a group
represented by the nearest from x1, ..., xk .

Naive implementation achieves O(nk2) complexity, but it can be easily
sped up to O(nk).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 34 / 60

Problem A AMPPZ in the times of disease

Solution 1:

Take any point x1, wlog add it to the group 1.

Let x2 be the farthest point from x1 (in case of draws select any). It can
be shown, that x2 has to be in the different group than x1, so let it be the
group 2.

In general: if we have assigned points x1, ..., xi into groups (respectively)
1, . . . , i so far, then xi+1, which maximizes minimal distance to any of
x1, ..., xi has to go into a new group.

At the end, we assign each of the remaining n − k points into a group
represented by the nearest from x1, ..., xk .

Naive implementation achieves O(nk2) complexity, but it can be easily
sped up to O(nk).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 34 / 60

Problem A AMPPZ in the times of disease

Solution 1:

Take any point x1, wlog add it to the group 1.

Let x2 be the farthest point from x1 (in case of draws select any). It can
be shown, that x2 has to be in the different group than x1, so let it be the
group 2.

In general: if we have assigned points x1, ..., xi into groups (respectively)
1, . . . , i so far, then xi+1, which maximizes minimal distance to any of
x1, ..., xi has to go into a new group.

At the end, we assign each of the remaining n − k points into a group
represented by the nearest from x1, ..., xk .

Naive implementation achieves O(nk2) complexity, but it can be easily
sped up to O(nk).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 34 / 60

Problem A AMPPZ in the times of disease

Solution 1:

Take any point x1, wlog add it to the group 1.

Let x2 be the farthest point from x1 (in case of draws select any). It can
be shown, that x2 has to be in the different group than x1, so let it be the
group 2.

In general: if we have assigned points x1, ..., xi into groups (respectively)
1, . . . , i so far, then xi+1, which maximizes minimal distance to any of
x1, ..., xi has to go into a new group.

At the end, we assign each of the remaining n − k points into a group
represented by the nearest from x1, ..., xk .

Naive implementation achieves O(nk2) complexity, but it can be easily
sped up to O(nk).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 34 / 60

Problem A AMPPZ in the times of disease

Solution 2:

Take arbitrary k + 1 points. Some two of them must be in the same
group, so particularly, the closest two of them must be in the same group.
Let’s label them x and y .

So, we add edge (x , y), remove one of these points from the set, and we
add a new point. We repeat this process for each remaining point. The
connected components of resulting graph will generate required partition
into groups.

The complexity of a naive implementation is O(nk2), using std::sets we
can improve the theoretical complexity to O(nk log k) (in practice, it’s
really slow).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 35 / 60

Problem A AMPPZ in the times of disease

Solution 2:

Take arbitrary k + 1 points. Some two of them must be in the same
group, so particularly, the closest two of them must be in the same group.
Let’s label them x and y .

So, we add edge (x , y), remove one of these points from the set, and we
add a new point. We repeat this process for each remaining point. The
connected components of resulting graph will generate required partition
into groups.

The complexity of a naive implementation is O(nk2), using std::sets we
can improve the theoretical complexity to O(nk log k) (in practice, it’s
really slow).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 35 / 60

Problem A AMPPZ in the times of disease

Solution 2:

Take arbitrary k + 1 points. Some two of them must be in the same
group, so particularly, the closest two of them must be in the same group.
Let’s label them x and y .

So, we add edge (x , y), remove one of these points from the set, and we
add a new point. We repeat this process for each remaining point. The
connected components of resulting graph will generate required partition
into groups.

The complexity of a naive implementation is O(nk2), using std::sets we
can improve the theoretical complexity to O(nk log k) (in practice, it’s
really slow).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 35 / 60

Problem G Gebyte’s Grind

Problem G
Gebyte’s Grind

Author: Krzysztof Maziarz

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 36 / 60

Problem G Gebyte’s Grind

Task

Consider a witcher with health points H and three kinds of objects:

beast, which decreases hp by bi (and kills if H ≤ bi);

inn, which kills if H < ki , and sets H to ki otherwise; and

witch, that sets H = max(H, ci).

The witcher’s trail is a sequence of n objects. We have to handle q
operations:

changes: one object changes into another

queries: we start at the position li with hp H0, and we wonder to
which ri ≥ li we are able to get, without dying

Limits: n ≤ 2 000 000, q ≤ 4 000 000.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 37 / 60

Problem G Gebyte’s Grind

We can think about every object as a function transforming starting health
into end witcher’s health (or 0 if he dies).

We can assemble functions for single objects easily, a sequence of many
objects is also a function, however, more complicated...

...but can it be very complicated?

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 38 / 60

Problem G Gebyte’s Grind

We can think about every object as a function transforming starting health
into end witcher’s health (or 0 if he dies).

We can assemble functions for single objects easily, a sequence of many
objects is also a function, however, more complicated...

...but can it be very complicated?

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 38 / 60

Problem G Gebyte’s Grind

We can think about every object as a function transforming starting health
into end witcher’s health (or 0 if he dies).

We can assemble functions for single objects easily, a sequence of many
objects is also a function, however, more complicated...

...but can it be very complicated?

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 38 / 60

Problem G Gebyte’s Grind

Turns out that an arbitrary sequence of objects after composing gives a
function having following representation:

f (x) =

0 for x ∈ [0, a]

y for x ∈ [a+ 1, b]

x − b + y for x ∈ [b + 1,+∞]

Proof: every base object is a special case of such function and a
composition of such functions returns a function in that form too.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 39 / 60

Problem G Gebyte’s Grind

Turns out that an arbitrary sequence of objects after composing gives a
function having following representation:

f (x) =

0 for x ∈ [0, a]

y for x ∈ [a+ 1, b]

x − b + y for x ∈ [b + 1,+∞]

Proof: every base object is a special case of such function and a
composition of such functions returns a function in that form too.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 39 / 60

Problem G Gebyte’s Grind

We maintain a segment tree, in every node keeping composition of objects
from the corresponding base segment as a function in the above form
(three numbers a, b, c).

The composition of two nodes can be implemented in constant time.

Change operation translates to leaf update and recalculation of O(log n)
nodes. To answer a query, we start in a leaf corresponding to li , firstly
climbing up, and later traversing down (also O(log n) time).

Final complexity: O((n + q) log n).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 40 / 60

Problem G Gebyte’s Grind

We maintain a segment tree, in every node keeping composition of objects
from the corresponding base segment as a function in the above form
(three numbers a, b, c).

The composition of two nodes can be implemented in constant time.

Change operation translates to leaf update and recalculation of O(log n)
nodes. To answer a query, we start in a leaf corresponding to li , firstly
climbing up, and later traversing down (also O(log n) time).

Final complexity: O((n + q) log n).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 40 / 60

Problem G Gebyte’s Grind

We maintain a segment tree, in every node keeping composition of objects
from the corresponding base segment as a function in the above form
(three numbers a, b, c).

The composition of two nodes can be implemented in constant time.

Change operation translates to leaf update and recalculation of O(log n)
nodes. To answer a query, we start in a leaf corresponding to li , firstly
climbing up, and later traversing down (also O(log n) time).

Final complexity: O((n + q) log n).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 40 / 60

Problem G Gebyte’s Grind

We maintain a segment tree, in every node keeping composition of objects
from the corresponding base segment as a function in the above form
(three numbers a, b, c).

The composition of two nodes can be implemented in constant time.

Change operation translates to leaf update and recalculation of O(log n)
nodes. To answer a query, we start in a leaf corresponding to li , firstly
climbing up, and later traversing down (also O(log n) time).

Final complexity: O((n + q) log n).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 40 / 60

Problem E Epidemic

Problem E
Epidemic

Author: Krzysztof Kleiner

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 41 / 60

Problem E Epidemic

Task

You are given n people, every person might be infected or not. Then k
consecutive events of the following form occur:
1 Group of people have a meeting - if any of them were infected, then

everybody from this group becomes infected (and remain infected
until the end of their lives).

2 Some person is tested and receives a negative result.
3 Some person is tested, receives a positive results and is put under

quarantine.
4 You receive a query: Is it possible to prove that people put under

quarantine are the only ones infected?

You need to be able to answer all the queries online.
Limits: n ≤ 500 000, k ≤ 1 000 000.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 42 / 60

Problem E Epidemic

We can represent current state of our knowledge as a directed acyclic
graph. Initially, it consists of n isolated vertices, on the i-th of then we put
a pawn corresponding to the i-th person.

We keep a set possibly infected of all people who might be infected
and are not under quarantine. Initially, this set contains all n people.

When group of people meet we create a new “meeting vertex”. We
add edges to this vertex from vertices in which pawns of meeting’s
participants currently are. Now, we move these pawns to the new
vertex. If any of the people in the meeting were in possibly infected,
then we need to put all of the participants in this set.

If some person receives positive test result, then we erase this person
from possibly infected and remove the corresponding pawn from the
graph.

If some person receives negative test result, then we need to update
the state of our knowledge.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 43 / 60

Problem E Epidemic

We can represent current state of our knowledge as a directed acyclic
graph. Initially, it consists of n isolated vertices, on the i-th of then we put
a pawn corresponding to the i-th person.

We keep a set possibly infected of all people who might be infected
and are not under quarantine. Initially, this set contains all n people.

When group of people meet we create a new “meeting vertex”. We
add edges to this vertex from vertices in which pawns of meeting’s
participants currently are. Now, we move these pawns to the new
vertex. If any of the people in the meeting were in possibly infected,
then we need to put all of the participants in this set.

If some person receives positive test result, then we erase this person
from possibly infected and remove the corresponding pawn from the
graph.

If some person receives negative test result, then we need to update
the state of our knowledge.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 43 / 60

Problem E Epidemic

We can represent current state of our knowledge as a directed acyclic
graph. Initially, it consists of n isolated vertices, on the i-th of then we put
a pawn corresponding to the i-th person.

We keep a set possibly infected of all people who might be infected
and are not under quarantine. Initially, this set contains all n people.

When group of people meet we create a new “meeting vertex”. We
add edges to this vertex from vertices in which pawns of meeting’s
participants currently are. Now, we move these pawns to the new
vertex. If any of the people in the meeting were in possibly infected,
then we need to put all of the participants in this set.

If some person receives positive test result, then we erase this person
from possibly infected and remove the corresponding pawn from the
graph.

If some person receives negative test result, then we need to update
the state of our knowledge.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 43 / 60

Problem E Epidemic

We can represent current state of our knowledge as a directed acyclic
graph. Initially, it consists of n isolated vertices, on the i-th of then we put
a pawn corresponding to the i-th person.

We keep a set possibly infected of all people who might be infected
and are not under quarantine. Initially, this set contains all n people.

When group of people meet we create a new “meeting vertex”. We
add edges to this vertex from vertices in which pawns of meeting’s
participants currently are. Now, we move these pawns to the new
vertex. If any of the people in the meeting were in possibly infected,
then we need to put all of the participants in this set.

If some person receives positive test result, then we erase this person
from possibly infected and remove the corresponding pawn from the
graph.

If some person receives negative test result, then we need to update
the state of our knowledge.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 43 / 60

Problem E Epidemic

We can represent current state of our knowledge as a directed acyclic
graph. Initially, it consists of n isolated vertices, on the i-th of then we put
a pawn corresponding to the i-th person.

We keep a set possibly infected of all people who might be infected
and are not under quarantine. Initially, this set contains all n people.

When group of people meet we create a new “meeting vertex”. We
add edges to this vertex from vertices in which pawns of meeting’s
participants currently are. Now, we move these pawns to the new
vertex. If any of the people in the meeting were in possibly infected,
then we need to put all of the participants in this set.

If some person receives positive test result, then we erase this person
from possibly infected and remove the corresponding pawn from the
graph.

If some person receives negative test result, then we need to update
the state of our knowledge.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 43 / 60

Problem E Epidemic

When person p receives negative test result, then we traverse our graph
with DFS, starting from a vertex v in which p’s pawn currently stands.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 44 / 60

Problem E Epidemic

Step of DFS(v) algorithm:

We know that there is a healthy person who took part in the meeting
v . Therefore, all participants of this meeting were healthy when they
met. For every pawn that is still in v we can deduce that
corresponding person is healthy and erase them from
possibly infected1.

We erase vertex v from the graph.

For every edge u → v , we call DFS(u). We can do it because all
participants of v were healthy, so all people that they met must have
been healthy too.

For every edge v → w , we erase such edge from the graph and check
if it was the last going into w from a meeting with potentially
infected people. If so, then we call DFS(w).

1The rest of the participants must have attended other meetings since v took place,
so we cannot be sure that they didn’t get infected

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 45 / 60

Problem E Epidemic

Step of DFS(v) algorithm:

We know that there is a healthy person who took part in the meeting
v . Therefore, all participants of this meeting were healthy when they
met. For every pawn that is still in v we can deduce that
corresponding person is healthy and erase them from
possibly infected1.

We erase vertex v from the graph.

For every edge u → v , we call DFS(u). We can do it because all
participants of v were healthy, so all people that they met must have
been healthy too.

For every edge v → w , we erase such edge from the graph and check
if it was the last going into w from a meeting with potentially
infected people. If so, then we call DFS(w).

1The rest of the participants must have attended other meetings since v took place,
so we cannot be sure that they didn’t get infected

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 45 / 60

Problem E Epidemic

Step of DFS(v) algorithm:

We know that there is a healthy person who took part in the meeting
v . Therefore, all participants of this meeting were healthy when they
met. For every pawn that is still in v we can deduce that
corresponding person is healthy and erase them from
possibly infected1.

We erase vertex v from the graph.

For every edge u → v , we call DFS(u). We can do it because all
participants of v were healthy, so all people that they met must have
been healthy too.

For every edge v → w , we erase such edge from the graph and check
if it was the last going into w from a meeting with potentially
infected people. If so, then we call DFS(w).

1The rest of the participants must have attended other meetings since v took place,
so we cannot be sure that they didn’t get infected

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 45 / 60

Problem E Epidemic

When we receive a query, then we can search for an answer in
possibly infected.

If this set is empty, then nobody (but people under the quarantine) is
infected and the epidemic has been contained.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 46 / 60

Problem E Epidemic

Complexity analysis

Let n be the number of people , s – number of meetings and c – sum of
meeting sizes.

Our graph has n + s vertices (one initial vertex for every person and
one created for every meeting) and (at most) c edges.

All DFS calls in all iterations take O(n + s + c) operations because
every visited vertex (or edge) is permanently erased after processing it.

Number of operations on possibly infected set is linear with respect
to the input size. Every person can be put to this set at most as
many times as there were meetings that this person attended (plus
one time during initialization). The same goes for the number of
times one person can be erased from possibly infected. Every
operation on the set takes O(log n) time.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 47 / 60

Problem E Epidemic

Complexity analysis

Let n be the number of people , s – number of meetings and c – sum of
meeting sizes.

Our graph has n + s vertices (one initial vertex for every person and
one created for every meeting) and (at most) c edges.

All DFS calls in all iterations take O(n + s + c) operations because
every visited vertex (or edge) is permanently erased after processing it.

Number of operations on possibly infected set is linear with respect
to the input size. Every person can be put to this set at most as
many times as there were meetings that this person attended (plus
one time during initialization). The same goes for the number of
times one person can be erased from possibly infected. Every
operation on the set takes O(log n) time.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 47 / 60

Problem E Epidemic

Complexity analysis

Let n be the number of people , s – number of meetings and c – sum of
meeting sizes.

Our graph has n + s vertices (one initial vertex for every person and
one created for every meeting) and (at most) c edges.

All DFS calls in all iterations take O(n + s + c) operations because
every visited vertex (or edge) is permanently erased after processing it.

Number of operations on possibly infected set is linear with respect
to the input size. Every person can be put to this set at most as
many times as there were meetings that this person attended (plus
one time during initialization). The same goes for the number of
times one person can be erased from possibly infected. Every
operation on the set takes O(log n) time.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 47 / 60

Problem E Epidemic

Complexity analysis

Let n be the number of people , s – number of meetings and c – sum of
meeting sizes.

Our graph has n + s vertices (one initial vertex for every person and
one created for every meeting) and (at most) c edges.

All DFS calls in all iterations take O(n + s + c) operations because
every visited vertex (or edge) is permanently erased after processing it.

Number of operations on possibly infected set is linear with respect
to the input size. Every person can be put to this set at most as
many times as there were meetings that this person attended (plus
one time during initialization). The same goes for the number of
times one person can be erased from possibly infected. Every
operation on the set takes O(log n) time.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 47 / 60

Problem B Babushka and her pierogi

Problem B
Babushka and her pierogi

Author: Daniel Goc

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 48 / 60

Problem B Babushka and her pierogi

Task

You are given a sequence of n integers ai and an integer sequence pi of
the same length. In both of these sequences elements are pairwise distinct
and consist of the same numbers (p is permutation of a). You are also
given number C .
In one move you can choose two indices i, j and swap ai , aj paying
|ai − aj |+ C .
Your task is to transform a into p at the lowest possible cost.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 49 / 60

Problem B Babushka and her pierogi

We can get a lower bound on the cost:
1
2

∑n
i=1 |ai − pi |+ (n − number of permutation cycles) · C

The second part of the sum comes from the fact that after all operations
we have a = p, so there are n cycles and a single swap can add at most
one cycle, therefore we need at least n − number of permutation cycles
operations.

It turns out that there exist an algorithm that solves this problem at
exactly that cost.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 50 / 60

Problem B Babushka and her pierogi

We can get a lower bound on the cost:
1
2

∑n
i=1 |ai − pi |+ (n − number of permutation cycles) · C

The second part of the sum comes from the fact that after all operations
we have a = p, so there are n cycles and a single swap can add at most
one cycle, therefore we need at least n − number of permutation cycles
operations.

It turns out that there exist an algorithm that solves this problem at
exactly that cost.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 50 / 60

Problem B Babushka and her pierogi

We can solve the problem for each permutation cycle separately, so we will
focus on a single cycle.

Our goal is to find two elements in the cycle, such that after swapping
them we have split the cycle into two cycles, and we are still able to
achieve the optimal cost. First condition is true for every two distinct
elements of the cycle. The second is true in a following situation: let i , j
be indices of cycle elements in the sequence, then:

aj ∈ [min(ai , pi),max(ai , pi)] ∧ ai ∈ [min(aj , pj),max(aj , pj)]

We choose element of the cycle such that corresponding element in p is
the largest possible. Then there always exists a different element of the
cycle such that paired with our chosen element it fulfils the
aforementioned condition (it is easy too see that otherwise it would be a
cycle with a single element and we wouldn’t need to split it).

If so, then we can search for such an element in our cycle, split it, update
sequence a and proceed recursively with two smaller cycles.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 51 / 60

Problem B Babushka and her pierogi

We can solve the problem for each permutation cycle separately, so we will
focus on a single cycle.

Our goal is to find two elements in the cycle, such that after swapping
them we have split the cycle into two cycles, and we are still able to
achieve the optimal cost. First condition is true for every two distinct
elements of the cycle. The second is true in a following situation: let i , j
be indices of cycle elements in the sequence, then:

aj ∈ [min(ai , pi),max(ai , pi)] ∧ ai ∈ [min(aj , pj),max(aj , pj)]

We choose element of the cycle such that corresponding element in p is
the largest possible. Then there always exists a different element of the
cycle such that paired with our chosen element it fulfils the
aforementioned condition (it is easy too see that otherwise it would be a
cycle with a single element and we wouldn’t need to split it).

If so, then we can search for such an element in our cycle, split it, update
sequence a and proceed recursively with two smaller cycles.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 51 / 60

Problem B Babushka and her pierogi

We can solve the problem for each permutation cycle separately, so we will
focus on a single cycle.

Our goal is to find two elements in the cycle, such that after swapping
them we have split the cycle into two cycles, and we are still able to
achieve the optimal cost. First condition is true for every two distinct
elements of the cycle. The second is true in a following situation: let i , j
be indices of cycle elements in the sequence, then:

aj ∈ [min(ai , pi),max(ai , pi)] ∧ ai ∈ [min(aj , pj),max(aj , pj)]

We choose element of the cycle such that corresponding element in p is
the largest possible. Then there always exists a different element of the
cycle such that paired with our chosen element it fulfils the
aforementioned condition (it is easy too see that otherwise it would be a
cycle with a single element and we wouldn’t need to split it).

If so, then we can search for such an element in our cycle, split it, update
sequence a and proceed recursively with two smaller cycles.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 51 / 60

Problem B Babushka and her pierogi

We can solve the problem for each permutation cycle separately, so we will
focus on a single cycle.

Our goal is to find two elements in the cycle, such that after swapping
them we have split the cycle into two cycles, and we are still able to
achieve the optimal cost. First condition is true for every two distinct
elements of the cycle. The second is true in a following situation: let i , j
be indices of cycle elements in the sequence, then:

aj ∈ [min(ai , pi),max(ai , pi)] ∧ ai ∈ [min(aj , pj),max(aj , pj)]

We choose element of the cycle such that corresponding element in p is
the largest possible. Then there always exists a different element of the
cycle such that paired with our chosen element it fulfils the
aforementioned condition (it is easy too see that otherwise it would be a
cycle with a single element and we wouldn’t need to split it).

If so, then we can search for such an element in our cycle, split it, update
sequence a and proceed recursively with two smaller cycles.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 51 / 60

Problem B Babushka and her pierogi

Naive search through the whole cycle is too slow, but we can alternate
between searching from the beginning and the end of the cycle, which
assures that we will check number of elements that is proportional to the
size of the smaller of two cycles obtained from the split. This gives
O(s log s) operations where s is the size of the initial cycle.

We need to keep the cycle in a structure that will allow us to quickly find
the largest element and to add/erase elements. A standard set is a good
option which gives us overall complexity of O(n log2 n). It is possible to
achieve O(n log n) using other structures, but it was not required.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 52 / 60

Problem B Babushka and her pierogi

Naive search through the whole cycle is too slow, but we can alternate
between searching from the beginning and the end of the cycle, which
assures that we will check number of elements that is proportional to the
size of the smaller of two cycles obtained from the split. This gives
O(s log s) operations where s is the size of the initial cycle.

We need to keep the cycle in a structure that will allow us to quickly find
the largest element and to add/erase elements. A standard set is a good
option which gives us overall complexity of O(n log2 n). It is possible to
achieve O(n log n) using other structures, but it was not required.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 52 / 60

Problem M Median

Problem M
Median

Author: Krzysztof Maziarz

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 53 / 60

Problem M Median

Task

We have an incorrect algorithm for computing the median of a sequence.
It works in a following way: if the sequence has at most 2 elements then
return the correct answer, otherwise split the sequence into 3 parts with
equal length, recursively compute the answer for them and then return
median of these 3 values.

Given sequence of n integers in range [0,m− 1], with q unknown numbers,
compute (modulo 109 + 7) in how many ways can we choose the unknown
values (from range [0,m− 1]) in such a way that the algorithm returns the
correct median of a sequence.

Limits: n ≤ 38 = 6561, q ≤ 30, m ≤ 109.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 54 / 60

Problem M Median

Task

We have an incorrect algorithm for computing the median of a sequence.
It works in a following way: if the sequence has at most 2 elements then
return the correct answer, otherwise split the sequence into 3 parts with
equal length, recursively compute the answer for them and then return
median of these 3 values.

Given sequence of n integers in range [0,m− 1], with q unknown numbers,
compute (modulo 109 + 7) in how many ways can we choose the unknown
values (from range [0,m− 1]) in such a way that the algorithm returns the
correct median of a sequence.

Limits: n ≤ 38 = 6561, q ≤ 30, m ≤ 109.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 54 / 60

Problem M Median

Task

We have an incorrect algorithm for computing the median of a sequence.
It works in a following way: if the sequence has at most 2 elements then
return the correct answer, otherwise split the sequence into 3 parts with
equal length, recursively compute the answer for them and then return
median of these 3 values.

Given sequence of n integers in range [0,m− 1], with q unknown numbers,
compute (modulo 109 + 7) in how many ways can we choose the unknown
values (from range [0,m− 1]) in such a way that the algorithm returns the
correct median of a sequence.

Limits: n ≤ 38 = 6561, q ≤ 30, m ≤ 109.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 54 / 60

Problem M Median

Let’s fix t ∈ [0,m − 1]. In how many ways can we choose the unknown
values such that both the correct median and the one returned by the
algorithm equals t?

Let’s replace the numbers smaller than t with −1, the equal ones with 0
and the bigger ones with 1. Let’s denote the number of −1s and 1s that
replaced the unknown numbers by x and y respectively (x , y ∈ [0, q]). It is
easy to verify if the correct median is 0 knowing x , y .

We will compute in how many ways can we choose the unknown values
(from set {−1, 0, 1}) in such a way that the algorithm returns 0.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 55 / 60

Problem M Median

Let’s fix t ∈ [0,m − 1]. In how many ways can we choose the unknown
values such that both the correct median and the one returned by the
algorithm equals t?

Let’s replace the numbers smaller than t with −1, the equal ones with 0
and the bigger ones with 1. Let’s denote the number of −1s and 1s that
replaced the unknown numbers by x and y respectively (x , y ∈ [0, q]). It is
easy to verify if the correct median is 0 knowing x , y .

We will compute in how many ways can we choose the unknown values
(from set {−1, 0, 1}) in such a way that the algorithm returns 0.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 55 / 60

Problem M Median

Let’s fix t ∈ [0,m − 1]. In how many ways can we choose the unknown
values such that both the correct median and the one returned by the
algorithm equals t?

Let’s replace the numbers smaller than t with −1, the equal ones with 0
and the bigger ones with 1. Let’s denote the number of −1s and 1s that
replaced the unknown numbers by x and y respectively (x , y ∈ [0, q]). It is
easy to verify if the correct median is 0 knowing x , y .

We will compute in how many ways can we choose the unknown values
(from set {−1, 0, 1}) in such a way that the algorithm returns 0.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 55 / 60

Problem M Median

It can be done for all (x , y) at once using dynamic programming on a tree
of the recurrence. In every node we keep the result for every tuple:
(x , y , a) where a ∈ {−1, 0, 1} is an answer for the node.

If for given x i y the correct median is 0 we can count the number of
solutions by multiplying the result from dp by tx(m − 1− t)y .

The dynamic solution is O(n + q4), so we can’t run it for every t.

Let X = {x1 < x2 < ... < xl} be the set of known values in the sequence .

Let S = {[0, x1 − 1], [x1, x1], [x1 + 1, x2 − 1], [x2, x2], . . . , [xl + 1,m − 1]},
|S | ∈ O(n). If p ∈ S the for each t ∈ p the dynamic solution returns the
exact same results.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 56 / 60

Problem M Median

It can be done for all (x , y) at once using dynamic programming on a tree
of the recurrence. In every node we keep the result for every tuple:
(x , y , a) where a ∈ {−1, 0, 1} is an answer for the node.

If for given x i y the correct median is 0 we can count the number of
solutions by multiplying the result from dp by tx(m − 1− t)y .

The dynamic solution is O(n + q4), so we can’t run it for every t.

Let X = {x1 < x2 < ... < xl} be the set of known values in the sequence .

Let S = {[0, x1 − 1], [x1, x1], [x1 + 1, x2 − 1], [x2, x2], . . . , [xl + 1,m − 1]},
|S | ∈ O(n). If p ∈ S the for each t ∈ p the dynamic solution returns the
exact same results.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 56 / 60

Problem M Median

It can be done for all (x , y) at once using dynamic programming on a tree
of the recurrence. In every node we keep the result for every tuple:
(x , y , a) where a ∈ {−1, 0, 1} is an answer for the node.

If for given x i y the correct median is 0 we can count the number of
solutions by multiplying the result from dp by tx(m − 1− t)y .

The dynamic solution is O(n + q4), so we can’t run it for every t.

Let X = {x1 < x2 < ... < xl} be the set of known values in the sequence .

Let S = {[0, x1 − 1], [x1, x1], [x1 + 1, x2 − 1], [x2, x2], . . . , [xl + 1,m − 1]},
|S | ∈ O(n). If p ∈ S the for each t ∈ p the dynamic solution returns the
exact same results.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 56 / 60

Problem M Median

It can be done for all (x , y) at once using dynamic programming on a tree
of the recurrence. In every node we keep the result for every tuple:
(x , y , a) where a ∈ {−1, 0, 1} is an answer for the node.

If for given x i y the correct median is 0 we can count the number of
solutions by multiplying the result from dp by tx(m − 1− t)y .

The dynamic solution is O(n + q4), so we can’t run it for every t.

Let X = {x1 < x2 < ... < xl} be the set of known values in the sequence .

Let S = {[0, x1 − 1], [x1, x1], [x1 + 1, x2 − 1], [x2, x2], . . . , [xl + 1,m − 1]},
|S | ∈ O(n). If p ∈ S the for each t ∈ p the dynamic solution returns the
exact same results.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 56 / 60

Problem M Median

It can be done for all (x , y) at once using dynamic programming on a tree
of the recurrence. In every node we keep the result for every tuple:
(x , y , a) where a ∈ {−1, 0, 1} is an answer for the node.

If for given x i y the correct median is 0 we can count the number of
solutions by multiplying the result from dp by tx(m − 1− t)y .

The dynamic solution is O(n + q4), so we can’t run it for every t.

Let X = {x1 < x2 < ... < xl} be the set of known values in the sequence .

Let S = {[0, x1 − 1], [x1, x1], [x1 + 1, x2 − 1], [x2, x2], . . . , [xl + 1,m − 1]},
|S | ∈ O(n). If p ∈ S the for each t ∈ p the dynamic solution returns the
exact same results.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 56 / 60

Problem M Median

One can prove that only O(q) of the ranges contributes to the final
answer. Informal argument: the median of all values won’t diverge much
from the median of all known values.

Using that fact we can run the dynamic solution only O(q) times so the
overall complexity is O(nq + q5).

The only problem is that we have to multiply the results from dp by∑R
t=L t

x(m − 1− t)y for many different x , y , L, R.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 57 / 60

Problem M Median

One can prove that only O(q) of the ranges contributes to the final
answer. Informal argument: the median of all values won’t diverge much
from the median of all known values.

Using that fact we can run the dynamic solution only O(q) times so the
overall complexity is O(nq + q5).

The only problem is that we have to multiply the results from dp by∑R
t=L t

x(m − 1− t)y for many different x , y , L, R.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 57 / 60

Problem M Median

One can prove that only O(q) of the ranges contributes to the final
answer. Informal argument: the median of all values won’t diverge much
from the median of all known values.

Using that fact we can run the dynamic solution only O(q) times so the
overall complexity is O(nq + q5).

The only problem is that we have to multiply the results from dp by∑R
t=L t

x(m − 1− t)y for many different x , y , L, R.

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 57 / 60

Problem M Median

Let Px ,y (t) = tx(m − 1− t)y .
Let Qx ,y (t) =

∑t
i=0 Px ,y (i).

We are interested in Qx ,y (R)− Qx ,y (L− 1).

Known fact: Qx ,y (t) is a polynomial of degree:
deg(Px ,y (t)) + 1 = x + y + 1.

Proof: Faulhaber’s formula.

We can compute it’s values in first x + y + 2 points:
Qx ,y (0),Qx ,y (1), . . .Qx ,y (x + y + 1).

Then use polynomial interpolation directly or indirectly to compute
Qx ,y (T) for any given T in O(q).

Total complexity O(nq + q5).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 58 / 60

Problem M Median

Let Px ,y (t) = tx(m − 1− t)y .
Let Qx ,y (t) =

∑t
i=0 Px ,y (i).

We are interested in Qx ,y (R)− Qx ,y (L− 1).

Known fact: Qx ,y (t) is a polynomial of degree:
deg(Px ,y (t)) + 1 = x + y + 1.

Proof: Faulhaber’s formula.

We can compute it’s values in first x + y + 2 points:
Qx ,y (0),Qx ,y (1), . . .Qx ,y (x + y + 1).

Then use polynomial interpolation directly or indirectly to compute
Qx ,y (T) for any given T in O(q).

Total complexity O(nq + q5).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 58 / 60

Problem M Median

Let Px ,y (t) = tx(m − 1− t)y .
Let Qx ,y (t) =

∑t
i=0 Px ,y (i).

We are interested in Qx ,y (R)− Qx ,y (L− 1).

Known fact: Qx ,y (t) is a polynomial of degree:
deg(Px ,y (t)) + 1 = x + y + 1.

Proof: Faulhaber’s formula.

We can compute it’s values in first x + y + 2 points:
Qx ,y (0),Qx ,y (1), . . .Qx ,y (x + y + 1).

Then use polynomial interpolation directly or indirectly to compute
Qx ,y (T) for any given T in O(q).

Total complexity O(nq + q5).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 58 / 60

Problem M Median

Let Px ,y (t) = tx(m − 1− t)y .
Let Qx ,y (t) =

∑t
i=0 Px ,y (i).

We are interested in Qx ,y (R)− Qx ,y (L− 1).

Known fact: Qx ,y (t) is a polynomial of degree:
deg(Px ,y (t)) + 1 = x + y + 1.

Proof: Faulhaber’s formula.

We can compute it’s values in first x + y + 2 points:
Qx ,y (0),Qx ,y (1), . . .Qx ,y (x + y + 1).

Then use polynomial interpolation directly or indirectly to compute
Qx ,y (T) for any given T in O(q).

Total complexity O(nq + q5).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 58 / 60

Problem M Median

Let Px ,y (t) = tx(m − 1− t)y .
Let Qx ,y (t) =

∑t
i=0 Px ,y (i).

We are interested in Qx ,y (R)− Qx ,y (L− 1).

Known fact: Qx ,y (t) is a polynomial of degree:
deg(Px ,y (t)) + 1 = x + y + 1.

Proof: Faulhaber’s formula.

We can compute it’s values in first x + y + 2 points:
Qx ,y (0),Qx ,y (1), . . .Qx ,y (x + y + 1).

Then use polynomial interpolation directly or indirectly to compute
Qx ,y (T) for any given T in O(q).

Total complexity O(nq + q5).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 58 / 60

Problem M Median

Let Px ,y (t) = tx(m − 1− t)y .
Let Qx ,y (t) =

∑t
i=0 Px ,y (i).

We are interested in Qx ,y (R)− Qx ,y (L− 1).

Known fact: Qx ,y (t) is a polynomial of degree:
deg(Px ,y (t)) + 1 = x + y + 1.

Proof: Faulhaber’s formula.

We can compute it’s values in first x + y + 2 points:
Qx ,y (0),Qx ,y (1), . . .Qx ,y (x + y + 1).

Then use polynomial interpolation directly or indirectly to compute
Qx ,y (T) for any given T in O(q).

Total complexity O(nq + q5).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 58 / 60

Problem M Median

Let Px ,y (t) = tx(m − 1− t)y .
Let Qx ,y (t) =

∑t
i=0 Px ,y (i).

We are interested in Qx ,y (R)− Qx ,y (L− 1).

Known fact: Qx ,y (t) is a polynomial of degree:
deg(Px ,y (t)) + 1 = x + y + 1.

Proof: Faulhaber’s formula.

We can compute it’s values in first x + y + 2 points:
Qx ,y (0),Qx ,y (1), . . .Qx ,y (x + y + 1).

Then use polynomial interpolation directly or indirectly to compute
Qx ,y (T) for any given T in O(q).

Total complexity O(nq + q5).

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 58 / 60

Credits

Jury

Lech Duraj
Krzysztof Maziarz
Krzysztof Kleiner

Daniel Goc
Mateusz Radecki

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 59 / 60

Credits

Beta testers

Rafał Burczyński
Marcin Briański

Kamil Rajtar
Witold Jarnicki
Jan Tułowiecki

Adam Szady
Mateusz Radecki
Kamil Dębowski
Marek Sommer

Thank you!

Jagiellonian University Polish Collegiate Programming Contest 2021 Editorial 7th November 2021 60 / 60

	Problem H
	Hidden password

	Problem D
	Divided mechanism

	Problem L
	Lemurs

	Problem K
	Kitten and Roomba

	Problem J
	Jungle Trail

	Problem C
	Cake

	Problem F
	Fence

	Problem I
	Interesting numbers

	Problem A
	AMPPZ in the times of disease

	Problem G
	Gebyte’s Grind

	Problem E
	Epidemic

	Problem B
	Babushka and her pierogi

	Problem M
	Median

	Credits

