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A. Driverless Car II

Author: quailty

If there exists two transmitters that have the same distance to the car, the area of such positions
is zero. We can safely assume that the car has pairwise distinct distances to all the transmitters.

Now we can enumerate the closest transmitter and the second closest transmitter to the car. To
satisfy the conditions, the car must located in the intersection of an ellipse and O(n) half-planes.
To calculate the area of the intersection, we first apply the O(n log n) time half-plane intersection
algorithm on a sufficiently large bounding box and these half-planes to get a (convex) polygon, then
we apply coordinates dilation along the major axis of the ellipse to make it a circle, and we finally
need to find the intersection of a polygon and a circle, which is a typical computation geometry
problem.

However, simply enumerating all pairs of transmitters results in an O(n3 log n) time complexity,
which is insufficient to fit in the time limit. To speed this up, we can build a Voronoi diagram of
the transmitters, where each Vonoroi cell contains one transmitter. When we enumerate the closest
transmitter to the car, the second closest transmitter must be in the neighbouring Voronoi cell
of the cell that contains the closest transmitter. It can be shown that the total number of pairs
enumerated is O(n), and the time complexity is O(n2 log n) in all.

B. Longest Increasing Subsequence

Author: elfness

Firstly we can split the final sequence into several levels, where each level is combination of at most
n− 1 subsequences:

– Base : a1
– Level 0 : a2, · · · ,an−1, an
– Level 1 : S1,1, S2,1, · · · , Sn−1,1

– · · ·
– Level m : S1,m, S2,m, · · · , Sn−1,m

As for the example input {1, 5, 20}, the splited levels will be:

– Base : 1
– Level 0 : 5, 20
– Level 1 : {3}, {12}
– Level 2 : {2, 4}, {8, 16}
– Level 3 : {}, {6, 10, 14, 18}
– Level 4 : {}, {7, 9, 11, 13, 15, 17, 19}

Here we have
m∑
j=1

|Si,j | = ai+1 − ai − 1 = Di, and we can prove that |Si,1| = 1, |Si,2| = 2, · · · ,

|Si,lasti | = Di − 2lasti−1 + 1, |Si,j | = 0 (j > lasti). And approximately, it’s not worthy to split a
subsequence Si,j if we want to get the longest increasing subsequence.

So we can use dynamic programming to find LIS, use fi,j to represent the length of LIS ending
with subsequence Si,j , then fi,j = max{fi−1,k | k ≤ j} + Li,k,j , where Li,k,j represents the length
of LIS of {Si,k, Si,k+1, ......, Si,j}. Here Li,k,j = |Si,j | for j < lasti, but for j ≥ lasti, Si,lasti−1 and
Si,lasti may combine to get a longer subsequence.

Time complexity: O(n logC).
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C. New Equipments III

Author: Claris

This is probably a typical minimum cost problem on a network with O(n) vertices and O(m) arcs,
if we negate all the values in the matrix p, build a weighted bipartite graph that corresponds to the
matrix p where all the zero-weighed edges are omitted, and build a network based on the bipartite
graph.

However, applying inefficient algorithm, e.g. the successive shortest path algorithm inO(nm logm)
time by augmenting the flow along one shortest path in residual network with reduced costs step
by step, can hardly fit in the time limit. The indented solution runs in O(tm

√
n) time, where t = 5

is the maximum possible value in the matrix p, based on the primal-dual algorithm.

The main idea is that, instead of augmenting the flow along one shortest path, in each step we
use Dinic’s algorithm to find the maximum flow through the so called admissible network, which
contains only those arcs with a zero reduced cost, and then the length of the shortest augment path
increases strictly. Since the length of the shortest augment path is always a negative integer no less
than −t, it needs to run Dinic’s algorithm on a unit network at most t times.

You may check MINIMUM COST FLOW PART TWO: ALGORITHMS for more information
on the the primal-dual algorithm.

D. Interesting String Problem

Author: oipotato

Consider building suffix trees for the string. Obviously, all substrings represented by a node in the
suffix tree must be continuous in the sequence. Calculate the prefix sum of the lengths by dfs order
and then you can find the node of the query by binary search. In order to find the position of the
character, you should solve such problem that find the k-th number in a subtree. This is a classic
problem, you can solve it by persistent segment tree.

E. Card Shark

Author: TsReaper

Let’s rephrase the problem in a more formal way:

Given n strings consisting of 0s and 1s, please concat all strings into a big string s0s1 · · · sk−1

so that for all 0 ≤ i < k, if i mod m = b then si = 1, otherwise si = 0.

Consider a given string t0t1 · · · tl−1. As there is at least one 1 in each string, let tj = 1 and let
t0 be the i-th (indices starts from 0) character in the big string, we have i + j ≡ b (mod m), so
i ≡ b− j (mod m).

Let’s construct a graph with m vertices. For string t0t1 · · · tl−1 we connect an edge from vertex
(b− j) mod m to (b− j + l) mod m. As the length of the big string is divisible by m, if we can
find a Euler circuit starting from vertex 0 and also ending at vertex 0 then we have an answer.

What’s left is to find the answer with the smallest lexicographic order. We just need to follow
the edge with the smallest index each time in DFS when calculating the Euler circuit.
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F. Coprime Matrices

Author: Gromah

Firstly ignore the constraint Mx,y = w, we can divide the matrix into several n × 2 strips, and
probably a single chain (if m is odd), then fill each region(n× 2 strip or n× 1 chain) in a snake-like
way. Here is an example where n = 5,m = 5:

1 2 11 12 21

4 3 14 13 22

5 6 15 16 23

8 7 18 17 24

9 10 19 20 25

As we can see, each vertical internal number x is adjacent to x− 1 or x+ 1, which is coprime
with x, and so do horizontal internal numbers.

Now consider the constraint Mx,y = w, we need just shift the numbers to make Mx,y = w since
gcd(1, nm) = 1 so that the property above still holds.

G. Factor

Author: elfness

Firstly we need to find out whether a number x is a good integer. if x =

m∏
i=1

paii (pi < pi+1), let

Si =
i∏

j=1

(

aj∑
k=0

pkj ), S0 = 1, x is a good integer if and only if for all 1 ≤ i ≤ m, pi ≤ Si−1 + 1.

Proof :
– Necessity: if for some i, pi > Si−1 + 1, then there is no subset with sum = pi − 1, because the

sum of factors of n whose prime factors are all less than pi exactly equals Si−1 and Si−1 < pi−1,
and other factors are all ≥ pi, which are useless to make up pi − 1.

– Sufficiency: proved by induction, assume that we can find a subset whose sum equals y for all

integer 1 ≤ y ≤ Si−1, as for each integer pi ≤ z ≤ Si, we can write z =

ai∑
j=0

bjpi
j(0 ≤ bj ≤ Si−1),

then we can find the subset by construction: for each integer 0 ≤ j ≤ ai, find the subset whose
sum equals bj , then multiply all integers in this subset by pi

j . Union the ai + 1 subsets we can
get a big subset whose sum equals z. So for all integers 1 ≤ y ≤ Si we can find a subset whose
sum equals y.

Then we can count the number of good integers by depth-first-search on prime numbers, for a
good integer x there are two situations:

– am = 1 : we can determine the number of them by enumerating C =
m−1∏
i=1

paii , where for all

integers 1 ≤ j < m, pj ≤ Sj−1 + 1, and count the number of valid pm’s. So we can use
depth-first-search on prime numbers to enumerate all valid C’s, then a prime number pm is
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valid iff pm > pm−1 and pm ≤ Sm−1 + 1 and C × pm ≤ n, here C × pm is a good integer in
this situation. We can use prefix-sum to calculate how many prime numbers are there in the
range

[
pm−1 + 1,min{Sm−1 + 1, ⌊ n

C ⌋}
]
, where one upper bound of pm may be 2035002 when

C = 491400 = 23 × 33 × 52 × 7× 13, S5 = 2083200, ⌊1012C ⌋ = 2035002.
– am > 1 : we can simply use depth-first-search to enumerate all of them.

When n = 1012, the total number of search iterations will be about 108, which costs about 2
seconds.

H. Graph Operation

Author: Tommyr7

Obviously, no matter how we operate, the degree of each vertex doesn’t change. Therefore, graph
G can be changed to graph H only when degrees of corresponding vertices in two graphs are the
same. Now, let’s prove that the condition is strong enough.

Let’s focus on a single vertex u. Define A as the set of vertices that are adjacent to u in graph
G, and B as the set of vertices that are adjacent to u in graph H.

If A = B, then we just ignore the vertex u and consider the remaining part.

If A ̸= B, then there exists two different vertices v and w such that u ∼ v, u ̸∼ w in graph G
and u ̸∼ v, u ∼ w in graph H, there are two situations we could check:

– There exists another vertex t such that v ̸∼ t, w ∼ t in graph G. We just select u, v, w, t and
perform an operation on graph G. Then, we repeat the process.

– There exists another vertex t such that v ∼ t, w ̸∼ t in graph H. We just select u,w, v, t and
perform an operation on graph H. Then, we repeat the process.

If the first situation doesn’t occur, we can know that degv > degw in graph G, and if the second
situation doesn’t occur, we can know that degw > degv in graph H. Since the degrees of v and w
in graph G are equal to those in graph H, degv > degw in G and degw > degv in H cannot occur
simultaneously, so that at least one of the situations above will occur.

Finally, we just need to output the operations we have performed on graph G, and then output
the operations we have performed on graph H in reverse order. Using bitset to speed up the process
of finding vertex t, the time complexity is O(n

3

ω ).

I. Optimal Assortment

Author: nothing100

For any given toy set S, the customer’s preference in the worst case is w0 = r0 and wi = li for all
i > 0. So the problem becomes to get the optimal set under such preference. And we can use binary
search to get the optimal set since we can check whether the answer is greater than p by adding all
the toys with v > p into the set and checking the profit greater than p or not.

However, there are series of modify operations, so we need to use some data structures such
as segment tree, self-balancing binary tree to determine the answer quickly after each operation.
O(m log n) or quick O(m log2 n) time complexity could be acceptable.
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J. Cell Tower

Author: jiangshibiao

8 × 8 seems to be too large for using state compressed dynamic programming to solve directly.
Usually under such circumstance, we may guess that the number of useful states might be limited
in an acceptable range. We define f(S) as the possible ways for filling the current grids to S, and
we use hash table and queue to maintain all useful states. We precompute all patterns of size 3
and 4. Then for each transition, we enumerate all patterns to fill the empty grid with lowest index.
Therefore, we can guarantee that no repetition nor missing in our brute-force. To accelerate the
transition, we can also precompute all possible patterns for each grid. Therefore, we can guarantee
that all enumeration is a legal transition. The time complexity is equal to the number of legal
transitions. For n = 11000, S and the number of legal transitions are at 106 leval, which is sufficient
to pass this problem in our time limit.

K. Xiangqi

Author: shb123

We can observe that the cannon can move to any position in at most 4 steps. Therefore, unless
the horse is very near to the king, using the cannon to attack the king is a better choice, because
moving to the nearest axis is faster than moving to the original point for the horse.

The case we use the horse to attack the king only happens when the initial position of the horse
is near to the king, for example, in the range [−15, 15] × [−15, 15]. We can use BFS to solve this
case.

The second case is that we use the cannon to attack. Because of the symmetry, we can always
assume that xh ≥ 0, yh ≥ 0, and the cannon attacks the king from the x-axis. We solve the positive
half-axis and the negative half-axis separately. If the cannon has been on the x-axis, we only need
one extra step to move the cannon to (±∞, 0). Therefore, we only need to solve one problem: What
is the minimum number of steps needed to move the horse to the corresponding half-axis? After
minimizing the number of steps, we need to minimize the distance between the final position of the
horse and the king.

For the positive half-axis, the minimum number of steps is always ⌈yh2 ⌉. We just calculate all
the possible final positions and find the minimum positive one.

For the negative half-axis, we first try to move to the x-axis with ⌈yh2 ⌉ steps and do a similar
adjustment. In the case that the leftmost position we can achieve in this way is still on the positive
half-axis, we can try to replace an (−1,−2) in the operation sequence with two (−2,−1), that move
the final position 3 units left with one extra step. If it’s still not enough, we can use (−2, 1)+(−2,−1)
to move the final position 4 units left with two steps. Notice that it’s better to jump from (1, 0) to
(−1, 0) with operation (−1, 2) + (−1,−2)(Although it doesn’t affect the final answer).

A special case: the horse is at (100, 0) and the cannon is at (99, 0). We need 3 steps to move the
cannon to (+∞, 0), and it’s better to move the horse. There might be some other ignored details,
try to find them by yourselves.
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