
2022 HDU Multi-University Training Camp

Contest 10

August 18, 2022

Important Notice
There should be 2 pictures attached to this PDF file, check if you have

received them as well. One is for Problem 2 and the other is for Problem 6.

1

1 Winner Prediction

1.1 Problem Description

A tournament consisting of n participants is currently taking place. The players
are numbered from 1 to n. Every match is between two participants, and there
are no draws. The participant who wins the most matches wins the entire
tournament; if there are multiple participants tied at the first place, all of them
win the tournament.

At the current state, some matches have ended, and others are yet to start.
You are given the results of all ended matches. Write a program to determine
whether it is possible for player 1 to win the tournament.

You are given T independent test cases. Solve each of them.

1.2 Input

The first line of input consists of a single integer T (1 ≤ T ≤ 100), indicating
the number of test cases. Then T test cases follow.

Each of the T test cases consists of multiple lines.
The first line contains three integers n,m1,m2(1 ≤ n ≤ 500, 1 ≤ m1,m2 ≤

1000), indicating the number of participants, the number of ended matches and
the number of upcoming matches.

Each of the next m1 lines contains three space-separated integers x, y, z(1 ≤
x, y ≤ n, x ̸= y, 0 ≤ z ≤ 1), indicating an ended match between player x and
player y , z = 1 means player x won the match and z = 0 means player y won
the match.

Each of the next m2 lines contains two space-separated integers x, y(1 ≤
x, y ≤ n, x ̸= y), indicating an upcoming match between player x and player y.

1.3 Output

For each test case, if it is possible of player 1 to win the tournament, print a
line YES; otherwise print a line NO.

1.4 Sample Input

2

4 2 1

2 3 1

3 2 1

1 4

4 2 2

2 3 1

2 4 1

1 2

3 4

2

1.5 Sample Output

YES

NO

3

2 Photos

2.1 Problem Description

You have a square farm, divided into n × n cells. There are m beautiful cells
among all cells, whose locations are given. You would like to take some photos
of the farm. A photo should figure a square area of the farm, with vertices
located on grid points and edges parallel to the grid lines. What’s more, its
principal diagonal should lie on the principal diagonal of the whole farm.

You would like to take several photos so that each beautiful cell is contained
in one photo. You hate repetitions so that any two of your photos should not
coincide, that is, their common area is 0. Each photo can contain an arbitrary
number of beautiful cells, possibly 0, 1 or more. Count the number of set of
photos satisfying the above conditions, modulo 998244353.

In case you are confused, here we provide an illustration. The farm shown
in this illustration is the same as the one in the sample test case.

You are given T independent test cases; solve each of them.

2.2 Input

The first line of input contains a single integer T (1 ≤ T ≤ 1500), indicating the
number of test cases. Then T test cases follow.

The first line of each test case contains two space-separated integers n,m(1 ≤
n ≤ 109, 1 ≤ m ≤ 105), denoting the size of the farm and the number of
good cells. Each of the next m lines contains two space-separated integers
xi, yi(1 ≤ xi, yi ≤ n), denoting the coordinates of a good cell.

It is guaranteed that
∑

m ≤ 106.

2.3 Output

For each test case, print a line consisting of a single integer, indicating the
answer modulo 998244353.

2.4 Sample Input

1

6 2

4 2

3 4

2.5 Sample Output

24

4

3 Wavy Tree

3.1 Problem Description

An array a of length n is said to be wavy, if for each 1 < i < n either ai >
max{ai−1, ai+1} or ai < min{ai−1, ai+1} holds.

You are given an array b of length n (1 ≤ bi ≤ 109) , consisting of integers.
You want to make the array wavy. To do that you can spend some coins, with
each coin you can make one element in b increase or decrease by 1. Calculate
the minimum number of coins you need to spend to make the array wavy.

3.2 Input

The first line contains the number of test cases T (1 ≤ T ≤ 103).
The first line of each test case contains one integer n (1 ≤ n ≤ 106) - the

length of array b .
The second line contains n integers b1, b2, · · · , bn (1 ≤ bi ≤ 109) - the array

b .
It’s guarantee that the sum of n among all test cases is not greater than

3× 106 .

3.3 Output

For each test case, output one integer, the minimum number of coins you need
to spend to make the array wavy.

3.4 Sample Input

3

4

1 7 6 5

6

1 2 3 4 5 6

6

1 1 4 5 1 4

3.5 Sample Output

2

4

4

5

4 Average Replacement

4.1 Problem Description

There are n people in a group and m pairs of friends among them. Currently,
each person writes an integer on his hat. They plan to play the following game
many times: everyone replaces his number on his hat with the average number of
his number and all of his friends’ numbers. That is, if before the game the person
has a0 written on his hat and a total of k friends, each having number a1, ..., ak,
then after the game the number on his hat becomes (a0+ · · ·+ak)/(k+1). Note
that numbers may become non-integers.

It can be proved that by playing more and more games, each number con-
verges to a certain value. Given the initial numbers written on the hats, your
task is to calculate these values.

4.2 Input

The first line contains the number of test cases T (1 ≤ T ≤ 100).
For each test case, the first line contains two integers n,m (1 ≤ n,m ≤ 105)

.
The second line contains n integers a1, a2, · · · , an (1 ≤ ai ≤ 108) , indicating

the number on each hat.
Each of the following m lines contains two integers u, v (1 ≤ u, v ≤ n) ,

indicating a pair of friends.
It’s guaranteed that there are no self-loop or multiple edges on the graph,

and there are at most 20 test cases such that n > 1000 or m > 1000.

4.3 Output

For each test case, output n real numbers in n lines, indicating the value of each
person at last. The results should be reserved with 6 digits after the decimal
point.

4.4 Sample Input

2

2 1

1 2

1 2

4 2

1 2 3 4

1 2

3 4

6

4.5 Sample Output

1.500000

1.500000

1.500000

1.500000

3.500000

3.500000

7

5 Apples

5.1 Problem Description

The people in city A want to share their apples. There are n people in city
A, and they are numbered from 1 to n. The i-th person has bi apples initially,
and this person will be happy if and only if he/she has exactly ei apples after
sharing.It is guaranteed that the total number of apples will not changed, which
is

∑n
i=1 bi =

∑n
i=1 ei.

The city has n undirected roads. The i-th road connects the i-th and the
(i mod n+ 1)-th person’s house. the apples can be transported by these roads.
Each road has a value li, denoting the cost of transporting a single apple from
person i to (i mod n+ 1) or from person (i mod n+ 1) to i. Each apple can be
transported by any road any number of times(including zero).

You need to find out a way to make all the people become happy and mini-
mize the total cost of all the apples. And the cost of an apple is the total cost
of all the roads it passed. Noted that an apple can pass the same road more
than one time, and the cost will be counted repeatedly.

The cost of some roads may be changed, and you need to find out all the
answers.

5.2 Input

The first line contains a single integer T (T ≤ 100) - the number of test cases.
For each test case:
The first line contains a single integer n(2 ≤ n ≤ 5 × 105) - the number of

people.
From the second line to the (n + 1)-th line, each line contains three inte-

gers bi, ei, li(0 ≤ bi, ei ≤ 109, 0 ≤ li ≤ 104). It is guaranteed that
∑n

i=1 bi =∑n
i=1 ei ≤ 109.
The (n+ 2)-th line contains a single integer q(0 ≤ q ≤ 5× 105).
Then the next q lines, each line contains two integers x, y(1 ≤ x ≤ n, 0 ≤

y ≤ 104), means that lx is changed to y. Please note that the change in lx has
aftereffects.

It is guaranteed that the sum of n and the sum of q do not exceed 2× 106.

5.3 Output

For each test case, output (q + 1) lines:
Each line contains a single integer, The first integer denotes the answer

without any changing, and the (i+1)-th integer (1 ≤ i ≤ n) denotes the answer
after the i-th change.

5.4 Sample Input

2

4

8

4 1 4

5 1 4

1 9 1

9 8 1

0

2

1 2 1

2 1 2

3

1 3

1 2

2 1

5.5 Sample Output

23

1

2

2

1

9

6 Triangle Rotation

6.1 Problem Description

You are given a triangle tower of n layers. There are i vertices in the i-th layer,
and at each vertex there is an integer written on it.

Below is a figure for n = 4.
It can be shown that there are a total of n(n+ 1)/2 vertices. We guarantee

that the numbers are a permutation of all integers in [1, n(n+ 1)/2].
You need to sort the numbers, first by row and second by column, with some

numbers of triangle rotations. A triangle rotation means:
- Select a unit triangle (the smallest non-zero triangle you can find in the

figure) and rotate the numbers on its three vertices clockwise.
Determine whether there exists a way to sort the numbers within 2n3 oper-

ations. If yes, print out one of them.

6.2 Input

The first line contains an integer T (1 ≤ T ≤ 150) - the number of test cases.
The first line of each test case contains an integer n(2 ≤ n ≤ 50) - the

number of layers of the tower.
The next n lines of each test case represent the numbers in the tower. The

i-th line contains i numbers.
It is guaranteed that

∑
n3 ≤ 106.

6.3 Output

For each test case, Output ”Yes” or ”No” in a single line, indicating whether
there exists a way to sort the numbers within 2n3 operations.

If your answer is ”Yes”, Output an integer k(0 ≤ k ≤ 2n3) - the number of
operation you used in a single line.

For the next k lines, output three integers x, y(1 ≤ x ≤ n−1, 1 ≤ y ≤ 2x−1),
indicating an operation at the y-th triangle between the x-th layer and the x+1-
th layer.

6.4 Sample Input

3

3

6

4 5

2 1 3

2

2

1 3

2

10

2

3 1

6.5 Sample Output

Yes

11

2 3

1 1

1 1

2 3

2 3

2 2

2 1

2 1

2 2

2 3

2 3

No

Yes

2

1 1

1 1

11

7 Even Tree Split

7.1 Problem Description

You are given an undirected tree with n nodes. It’s guaranteed that n is even.
You are going to delete some of the edges (at least 1), and have to let each

of the remaining connected components have an even number of vertices.
Calculate the number of ways to delete the edges that satisfy such con-

straints, modulo 998244353.

7.2 Input

The first line contains an integer T (1 ≤ T ≤ 30) - the number of test cases.
The first line of each test case contains an integer n(1 ≤ n ≤ 105) - the

number of vertices on the tree.
The next n−1 lines of each test case contain two integers u, v(1 ≤ u, v ≤ n),

representing an edge between u and v.
It is guaranteed that the input graph is a tree with even number of vertices.

7.3 Output

For each test case, output the number of ways to delete the edges that satisfy
such constraints in a single line, modulo 998244353.

7.4 Sample Input

2

2

1 2

4

1 2

2 3

3 4

7.5 Sample Output

0

1

12

8 Minimum Diameter

8.1 Problem Description

The following is the minimum diameter problem.
- You are given a forest (an acyclic undirected graph) with n vertices. Con-

sider adding some edges to the forest to turn it into a tree. Find the minimum
possible diameter of the resulting tree.

Here the diameter of a tree is defined as the maximum distance among all
pairs of vertices. The distance of two vertices in a tree is defined as the number
of edges on the shortest path between them.

You are given a forest of n vertices and m edges. The edges are numbered
from 1, 2, ...,m. For each i = 1, 2, ...,m, consider the forest only containing the
first i edges, and compute the answer to the minimum diameter problem
on this forest.

8.2 Input

The first line contains a single integer T (1 ≤ T ≤ 103) - the number of test
cases.

For each test case, the first line contains two integers n,m (2 ≤ n ≤ 105, 1 ≤
m < n).

Each of next m lines contains two integers u and w (1 ≤ u,w ≤ n) - describes
the i-th edge of the forest.

It’s guarantee that the sum of n among all test cases is not greater than 106

and m edges form a forest.

8.3 Output

For each test case, output m lines. The i-th of these lines should contain a
single integer, indicating the answer to the minimum diameter problem on
the forest only containing the first i edges of the original forest.

8.4 Sample Input

1

5 4

1 2

2 3

3 4

4 5

8.5 Sample Output

2

2

13

3

4

14

9 Painting Game

9.1 Problem Description

There is a paper strip divided into n blank grids. For each i(1 ≤ i < n), grid i
and i+ 1 are considered adjacent.

Alice and Bob are going to play a game on the strip. They take turns to
make move. In one move the player must paint one of the remaining blank grids
black, while keeping the rule that no two black grids are adjacent.

The game ends when one of the players is unable to paint any grid, and the
score of the game is defined as the total number of grids painted black. Alice
wants to minimize the score, while Bob wants to maximize it.

Given n and the side starting the game, find out the final score when both
players play optimally.

9.2 Input

The first line contains an integer T (1 ≤ T ≤ 105) - the number of test cases.
The first line of each test case contains an integer n(1 ≤ n ≤ 109) and a

string s(s ∈ {Alice, Bob}) - the number of grids and the starting player of this
game.

9.3 Output

For each test case, output the final score when both players play optimally in a
single line.

9.4 Sample Input

4

3 Alice

3 Bob

19 Alice

23 Bob

9.5 Sample Output

1

2

8

10

15

10 Tree

10.1 Problem Description

You are given a directed graph with n vertices and m edges. The vertices are
numbered from 1 to n.

For each vertex i, find out the number of ways to choose exactly n− 1 edges
to form a tree, where all the other n− 1 vertices can be reached from i through
these n− 1 edges.

10.2 Input

The first line contains a single integer T (1 ≤ T ≤ 100) - the number of test
cases.

For each test case:
The first line contains two integers n,m(1 ≤ n ≤ 500, 0 ≤ m ≤ n× (n− 1))

- the number of vertices and the number of edges.
The next m lines, each line contains two integers x, y(1 ≤ x, y ≤ n, x ̸= y),

denoting an edge. It is guaranteed that all the edges are different.
It is guaranteed that there are no more than 3 test cases with n > 100.
It is guaranteed that there are no more than 12 test cases with n > 50.

10.3 Output

For each test case, output n integers in a line, the i-th integer denotes the answer
for vertex i. Since the answer may be too large, print it after modulo 109 + 7.

Please do not have any space at the end of the line.

10.4 Sample Input

2

1 0

7 12

1 3

2 1

1 4

5 1

4 7

6 5

2 3

4 6

3 1

6 4

7 1

1 2

16

10.5 Sample Output

1

2 3 1 4 2 6 2

17

11 Maximum Triangles

11.1 Problem Description

We called a triangle is good if and only If the triangle contains the origin.
You need to find n points on the plane, satisfying:
- None any two of them and the origin should be collinear.
- The coordinates of each point should be an integer and in the range

[−50000, 50000].
- Under the above limits, the number of good triangles made up of those n

points should be maximized.
Output the maximum number and a set of the coordinates of those n points

for which the maximum is reached.

11.2 Input

The first line of input contains a single integer T (1 ≤ T ≤ 10), indicating the
number of test cases.

Each of the next T lines contains a single integer n(1 ≤ n ≤ 2 × 105),
describing the number of points you have to find for that test case.

It is guaranteed that the sum of n over all test cases does not exceed 106.

11.3 Output

For each test case print (n+1) lines. The first line should contain a single integer,
denoting the maximum number of good triangles. The i-th of the next n lines
should contain two space-separated integers xi, yi(|xi|, |yi| ≤ 50000), denoting
the coordinates of the i-th point of the set. If there are multiple solutions,
output any.

11.4 Sample Input

1

3

11.5 Sample Output

1

0 1

-1 -1

1 -1

18

12 Expected Inversions

12.1 Problem Description

For an integer sequence a1, ..., an of length n, its inversion number inv(a) is
defined as the number of integer pairs (i, j) such that 1 ≤ i < j ≤ n and
ai > aj .

For a given rooted tree of n nodes (with vertices numbered from 1 to n), a
DFS procedure on the tree is as following.

- During the process, we maintain a current vertex, namely u, and a set
of visited vertices, namely M .

- Let the root of the tree be x. Initially, u = x and M = {x}.
- Repeat the following process until M contains all vertices:
- - If there is at least one child vertex of u that is not in M , randomly choose

one among those vertices equiprobably (namely v). Set u to v and add v to M .
- Otherwise, set u to the father of u.
For each u = 1, ..., n, we record the number of vertices in M when u is added

toM (including u). Let this number be du. We call (d1, d2, ..., dn) aDFS order.
As DFS procedure is non-deterministic, the resulting DFS order may vary
as well. Assume that each decision in the DFS procedure is independent.

You are given an unrooted tree of n vertices, with vertices numbered from
1 to n. For each i = 1, ..., n, compute the expected inversion number of the
DFS order when rooting the tree at i and start a DFS procedure. To avoid
precision errors, print the answer modulo 998244353.

You are given T independent test cases. Solve each of them.
How to compute non-integers modulo 998244353: It can be proved

that the answer to this problem can always be written as a fraction P/Q with
P,Q being integers and Q ̸≡ 0 (mod 998244353). There is exactly one integer
R ∈ [0, 998244353) that satisfies QR ≡ P (mod 998244353). Print this R as
the answer.

12.2 Input

The first line of input contains a single integer T (1 ≤ T ≤ 10), indicating the
number of test cases. Then T test cases follow.

The first line of each test case contains a single integer n(1 ≤ n ≤ 105),
indicating the number of vertices in the tree. Each of the next n − 1 lines
contains two integers u, v(1 ≤ u, v ≤ n), indicating an edge on the tree. It is
guaranteed that the input edges form a tree.

12.3 Output

For each test case, print the answers in n lines. The i-th line should contain the
expected inversion number of the DFS order when rooting the tree at vertex
i.

19

12.4 Sample Input

1

3

1 2

1 3

12.5 Sample Output

499122177

1

2

20

