Game Solution

)

Let Eyes be the set of edges about which the contestant has answered “yes’
(connected), Ey, the set of edges about which contestant has answered “no”, and
Enaybe the rest of the edges, whose statuses are not yet determined. Also, let
G = (V,Eyes) and H = (V, Eyes U Epaybe). G is the graph you get by assuming
that every edge in Fayhe are not connected, while H is the graph you get by
assuming that all edges in Eyaybe are connected.

Initially, G is empty and thus not connected, while H is connected. In order not
to reveal any clue to the judge, the contestant should maintain the invariant: G
should always be disconnected, while H should always be connected.

There are several possible ways to maintain the invariant.

An O(n?) solution

When asked by the judge whether an edge e = (u, v) is connected, answer “no”
if and only if e is part of a cycle in H. One can see that this does not change
the connectivity of G and H.

To decide whether e forms a circle, one can perform a depth-first search to find
out whether there is a path from u to v in (V, Eyes U Emaybe — (1, v)). This is
an O(n?) operation. As there are O(n?) edges, the total running time is O(n?).

In other words, we answer “yes” if and only if e is a bridge in H.

An O(n?) solution

Given a vertex v, let D(v) be the connected component v belongs to in G. We
maintain two data structures:

1. R is a table mapping each v to a representative of D(v).

2. S is a symmetric matrix indexed by V. For v and v in V, if R(u) # R(v),
S(R(u), R(v)) is the number of edges, in Enaybe, that connects D(u) and
D(v).

The contestant answers “yes” to query (u,v) if and only if S(R(u), R(v)) = 1.

R can be implemented as a disjoint-set linked list. Each disjoint set is represented
by a linked list of its elements, and the representative is the one at the head.
Each element has a pointer to its representative. To unite two sets we connect
the lists, and update the pointers. An union takes O(n) time and a find takes
O(1) time.

As for S, initially S(u,v) = 1 unless u = v. Whenever the judge asks about
(u,v), S is updated as follows.



1. If the contestant answers “no”, we decrement S(R(u), R(v)) by 1.

2. If the contestant answers “yes”, let w be the representative after uniting
D(u) and D(v). For each x that is a representative of some connected com-
ponent, both S(w,x) and S(z,w) are updated to S(R(u),z) + S(R(v),x).

There can be at most n — 1 unions, thus the total time spent on union is O(n?).
An update of S requires O(1) time for a “no” response, and O(n) time for a
“yes” response. Since the graph G is a tree, we respond “yes” exactly n — 1
times. Thus the time spent on updating S is also O(n?). We thus have an O(n?)
algorithm.

An One-Liner O(n?) Algorithm

There is a surprising one-line O(n?) algorithm:

#include "game.h"

void initialize(int n) {
// DO NOTHING!
}

int c[1500];
int hasEdge(int u, int v) {
return ++cflu > v ?2u : v] == (u>v ?2u: v);

}

To understand the algorithm, imagine that we partition the set of all the possible
edges into Ey, Ea,...E,_1, with E; = {(i,j) | i > j}. Each E; has exactly ¢
possible edges. The algorithm above answers “yes” to (u,v) (where u > v) if it
is the last edge in E, that is queried.

To see how it works, consider the last query. Denote the queried edge by e, and
the graph G = (V, Eyes — €). The contestant wins if G is disconnected, while
G + e is connected.

e G is disconnected, since it contains only n — 2 edges.

e (G + e is connected, since it contains n — 1 edges, and there is no cycle in
G + e. One can see that there is no cycle since, in each E;, we answer yes
to only one edge. Formally, if there is a cycle C' in G + e, considering the
node w in C with largest id, F, must has exactly one edge in G 4 e. But
u has two neighbors in C' with smaller ids, a contradiction.



	Game Solution
	An O(n4) solution
	An O(n2) solution
	An One-Liner O(n2) Algorithm


