
Gondola

Solutions

Overview

This is an easy problem. Even though it might seem that there are three separate
tasks (as indicated by the grouping of subtasks), the task is

actually incremental. The three parts (check whether there is a solution – find
one solution – count all solutions) are closely related.

Subtasks 1-3

In subtask 1, once we see the first gondola (i.e., inputSeq[0]), the rest is
uniquely determined. We just need to iterate through the sequence and check
whether everything matches.

• N = len(sequence)
• for n:=1..N: if sequence[n] % N != (sequence[0]+n) % N: return False
• return True

The same code will actually solve subtask 2.

The pseudocode for the general subtask 3 is:

• If there exist one of the original gondolas: check whether the other original
gondolas are in the expected places, if not, return false.

• Return true if all the values are distinct, false otherwise.

Subtasks 4-6

A simple solution for subtask 4: if the largest number in the sequence is n,
terminate, otherwise output the only missing number and terminate.

Solutions for subtasks 5 and 6 share the same idea, the difference is that subtask
4 allows its inefficient implementations. There are many possible solutions. Here
is one of them.

• Collect all non-original gondolas. For each of them determine the original
gondola it replaced.

• Sort these records according to the new gondola number.
• In sorted order, replace the original gondolas by new ones until the expected

numbers are reached.

1



Note that the case where no original gondolas are present may require special
attention – not just for the contestants, but also in the grader for these subtasks.

Subtasks 7-10

Counting the repair sequences directly is hard. One way of doing it is by asking
the question: How many repair sequences start with gondola x being
replaced? for each x. Each choice of x leads us to a new state with one fewer
gondolas to replace.

Using this idea we can now solve subtask 8 by dynamic programming: for each
admissible state of the lift we compute the number of ways in which it can be
solved.

Subtasks 9 and 10 require one additional insight. (This is, probably, the only
tricky part of this problem, and the insight needed is not too hard.)

Instead of looking at the old gondola that is being removed, we will simply look
at the new gondola that is being added. How many different

options do we have for its place? If the new gondola is present in the final
sequence, its place is uniquely determined. Otherwise, the number of places
where

this new gondola can be added is simply the number of places that end up having
a gondola with a larger number.

Additionally, we need to multiply the result by n if none of the original gondolas
is present. (All n cyclic rotations of the original sequence are now possible,

and the repair sequences for different rotations are necessarily distinct.) We
outline the algorithm as follows:

• Run the algorithm for subtasks 1-3 to check whether the input sequence is
valid or not.

• If valid, for each replaced gondola we find the original gondola it ultimately
replaced, and we sort these records according to the new gondola number.

• The total number of possibilities can now be computed by multiplying the
number of possible locations for each gondola between n+1 and the largest
replaced gondola number present. Note the multiplicative operation is
modular here.

• Finally, multiply by n if all original gondolas are replaced.

2


	Gondola
	Solutions
	Overview
	Subtasks 1-3
	Subtasks 4-6
	Subtasks 7-10



