Solution for the Holiday Task

For ease of description, we will first describe a simple O(nlogn)-time so-
lution for the special case of the starting city start being the one with the
index 0 for any fixed d. That is, start = 0 and d is a given number. Then
we extend this solution to build a table of solutions in O(nlog?n) time for
all possible values of d. Finally we describe how to extend this solution to
solve the general case of an arbitrary start with the same asymptotic time
complexity.

Simple solution for start =0 and a given fixed d

Without lost of generality, assume we start at the leftmost city and move
right. It is easy to see that we only need to move right and there is no need
to move left at any time. Assume in an optimal solution, city right is the
rightmost city we will travel to. Then we can visit up to d — right cities
among the cities with labels 0,1, ..., right. In order for the solution to be
optimal, we want to visit the d — right cities with the largest number of
attractions. That is, if we sort the cities with labels 0,1, ..., right using the
number of attractions as their keys, then we want to know the sum of the
d — right largest number of attractions.

Segment tree We use a data structure called segment tree for this part
though it may appear this data structure is not needed to solve this very
special case. However, it will be clear why this data structure is used in
the solution to the intermediate case. The segment tree data structure has
been used in previous IOI contests including 2001 Baltic OI. The segment
tree has many variations. We will use the following one. A segment tree is
a rooted complete binary tree with leaves carrying a flag indicating whether
this leaf is active or not, and a value. For each internal node v, it keeps
the sum of the values of all of the active leaves in the subtree rooted at v.
Each internal node also maintains the number of currently active leaves in
the subtree rooted at v.

Assume the segment tree has n leaves. Note that we need to add dummy
leaves of n is not a power of 2. Further assume the values of the leaves, active
or in-active, are in non-increasing order from left to right. To maintain this
data structure, it takes O(logn) time to turn on or off any leaf. It also takes
O(logn) time to find out the sum of the values in the largest = active leaves
for any given x. A side note is when z is more than the number of active
leaves, then we simply output the sum of the values of all active leaves.



Algorithm Initially, we sort the cities using their number of attractions as
keys in non-increasing order. Then in this order, we place them as leaves in
the segment tree from left to right with all leaves in-active. The number of
attractions are now the values of the leaves. The initialization phase takes
O(nlogn) time. We turn on a leaf when it is being move to during the
search of our solution. We iterate on all possible values of the rightmost city
we can move to. Hence it takes a total of O(nlogn) time to find a solution
for this easy special case.

Intermediate solution for start = 0 and all possible values of d

Now we describe how to solve this intermediate case. In our previous so-
lution, we can find the maximum number of attractions we can visit given
any d. Let f(d) be the label of the city we move to in d days so that the
maximum number of attractions can be found. Note that f(d) may not
be unique. In the case of multiple ones, we pick the one with the small-
est label. We now want to build a table for all possible values of d. The
idea is to use recursive divide-and-conquer approach. Let M be the max-
imum number of d. For ease of description, let M be a power of 2. To
compute the solutions for f(1), f(2),..., f(M) we first find f(M/2) using
our previous algorithm by iterating through all cities from 0 to n and then
recursively compute f(1), f(2),..., f(M/2—1) in one branch by considering
only cities from 0 to f(M/2), and f(M/2+1), f(M/2+2),..., f(M) in the
other branch by considering only cities from f(M/2) to n. In the branch
of computing f(1), f(2),..., f(M/2 — 1), we first compute f(M/4) among
cities 0 to f(M/2). In general, the total amount of time spent in each level
of recursive calls takes a total of O(nlogn). There are a total of O(logn)
levels. Hence the overall time complexity is O(nlog®n).

In solving this intermediate case, it is now clear how the segment tree
is useful. First we only need to do the initialization once. Secondly, we can
easily turn on or off a leaf to accommodate the fact that the cities that we
pay attention to in each level of recursion. For example, only half of the
leaves are active during the second level of recursion.

General solution for an arbitrary value of start

Now we are ready to show the general solution. Observe the fact that when
the value of start is arbitrary, then the solution can be found in either one of
the following 2 cases. We first move right to a city, then move left from this
point, and then finally stop at a city left of start. Or we first move left to a



city, then move right from this point, and then finally stop at a city right of
start. That is, we only change the direction once. Without lost of generality,
we assume the first scenario. We first use the immediately solution to find
f(t) for all possible of values ¢. Then we also use the immediately solution
to find ¢(t) for all possible values of ¢ where g(t) is the city we will stop in an
optimal solution if we only move left and the starting city is start — 1. We
first iterate on dy the days we want to spend on moving and visiting cities
to the right of, and including, start. Using the solution to the intermediate
case, we know f(dp). Then we know we can spend d—dy— (f(dy) — start) —1
days on the cities to the left of start. Hence the overall time complexity is
O(nlog®n).



