ビルの飾りつけ3 解説

今西健介 (@japlj)

問題概要

問題

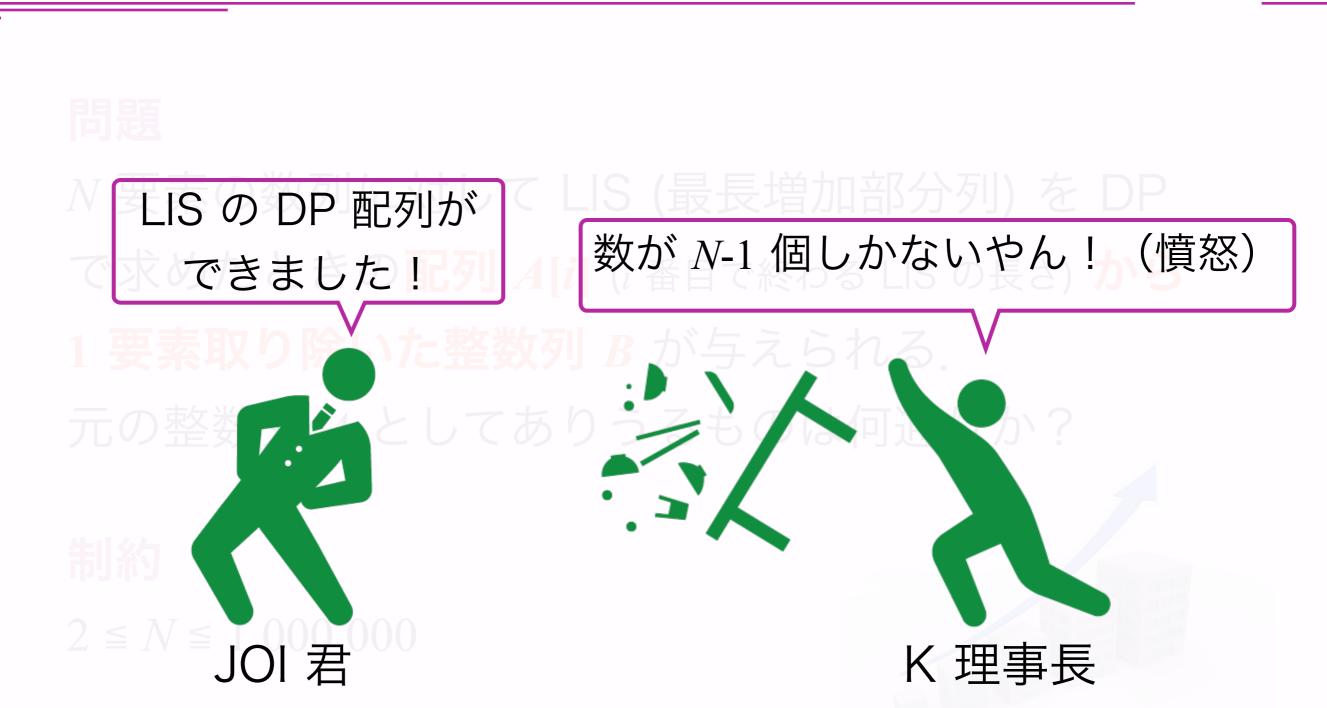
N 要素の数列に対して LIS (最長増加部分列)を DP で求めたときの配列 A[i] (i 番目で終わる LIS の長さ) から
1 要素取り除いた整数列 B が与えられる.

元の整数列 A としてありうるものは何通りか?

制約

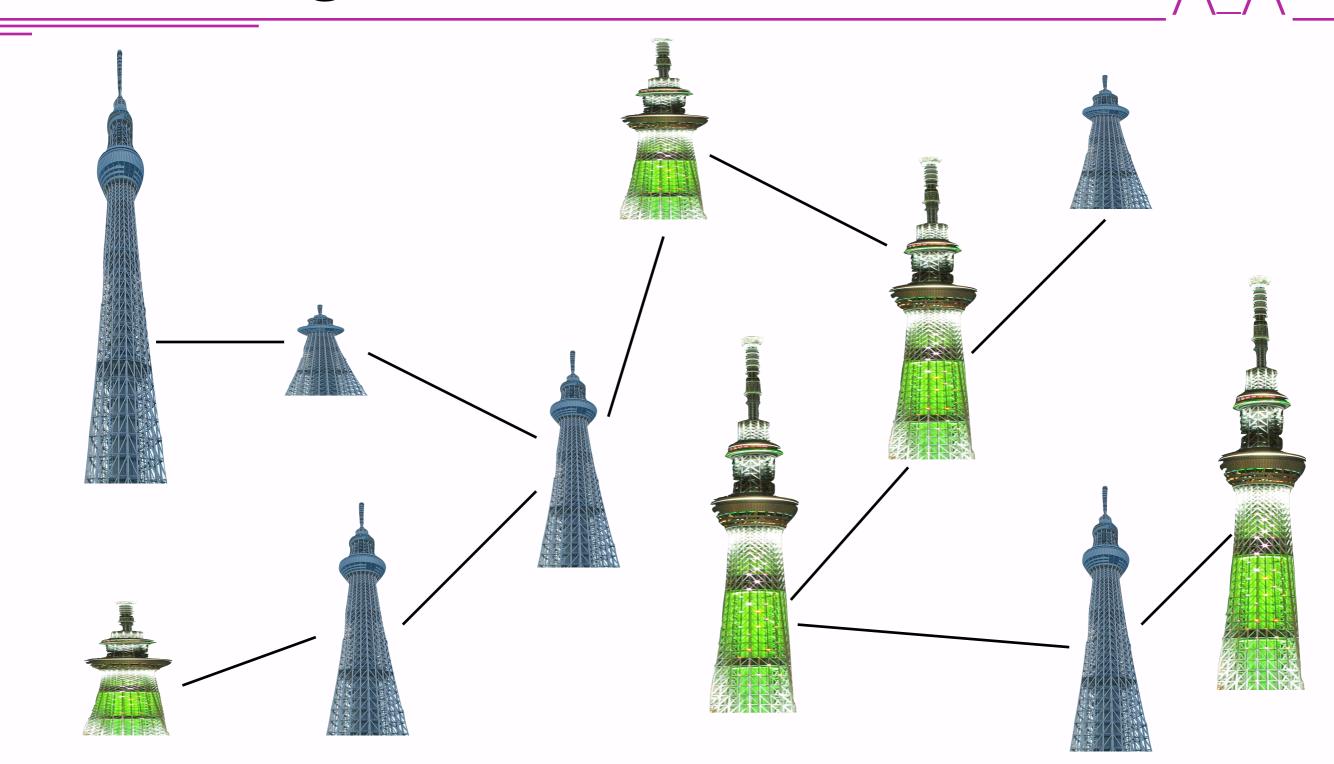
 $2 \le N \le 1\ 000\ 000$

問題概要



Building

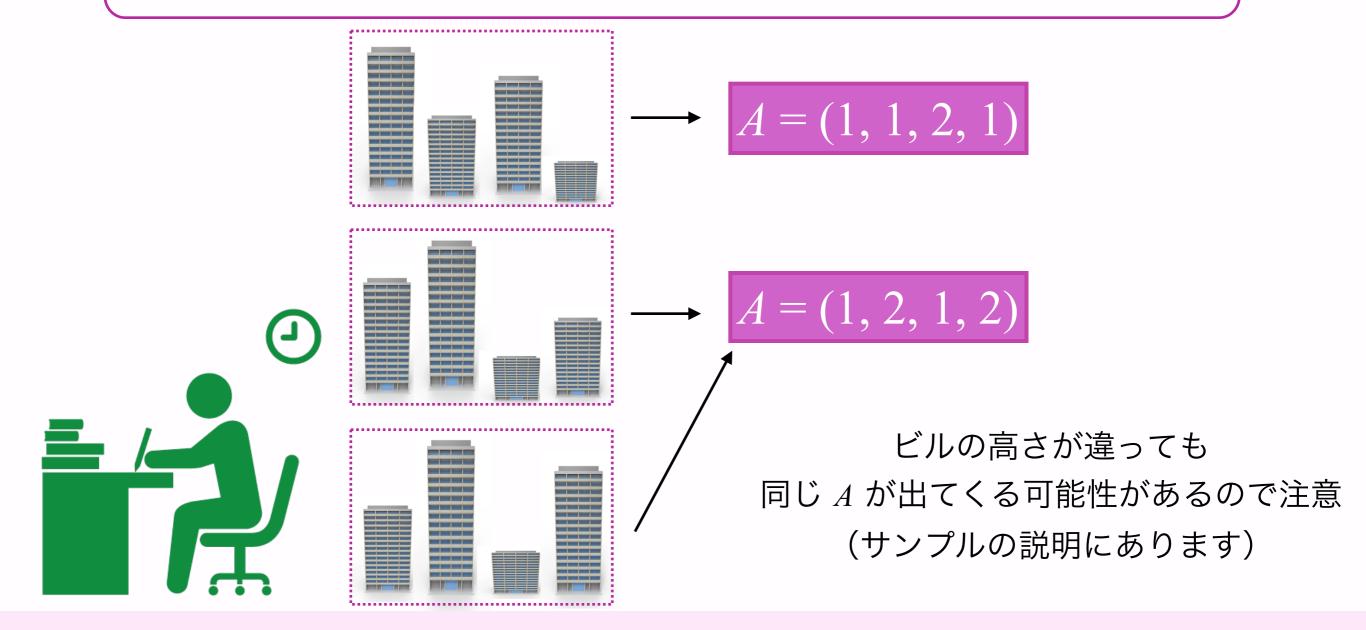
Building 2



Building 3

小課題 1

ビルの高さの関係を全探索 $\rightarrow A$ を実際に求める



小課題 2

A, B の性質

- ・Aから 1 つの要素を取り除いたものが B (という仮定)
- $1 \le A[i] \le N$

Bに $1\sim N$ のどれかを挿入してできる列が A の候補

候補は「挿入位置 × 挿入する数」で O(N²) 通り

Aの候補を全探索

A の候補を $O(N^2)$ 通り全部試すとして……

問題'

整数列 A' が与えられる。LIS の DP 配列が A' となるようなビルの高さの列が存在するか?

という問題が解ければよい.

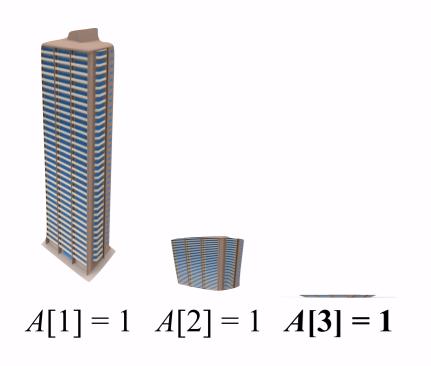
A'が $O(N^2)$ 通りあるので、 $N \le 300$ だと判定は O(N) ぐらいでやりたい.

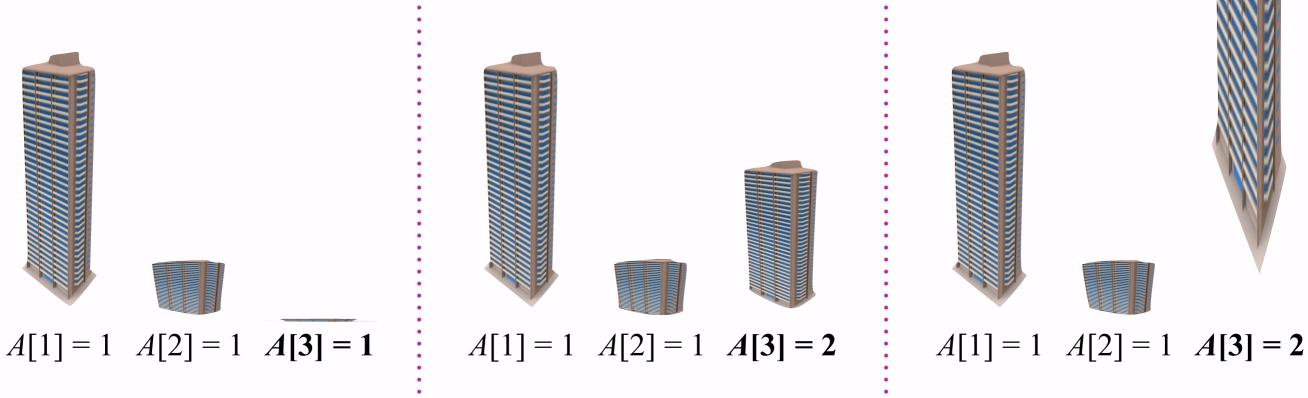
ビル 1 の高さに関わらず A[1] = 1

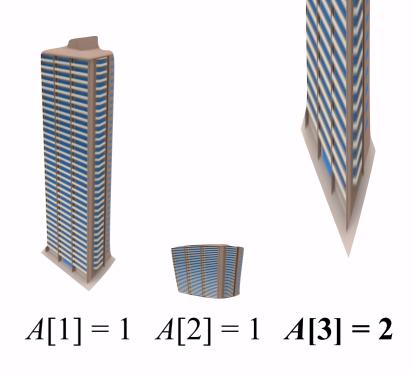
ビル 2 の高さによって A[2] = 1 or 2

$$A[2] = 1 \Leftrightarrow A[3] = 1 \text{ or } 2$$

$$A[2] = 2 \% 6 A[3] = 1 \text{ or } 2 \text{ or } 3$$

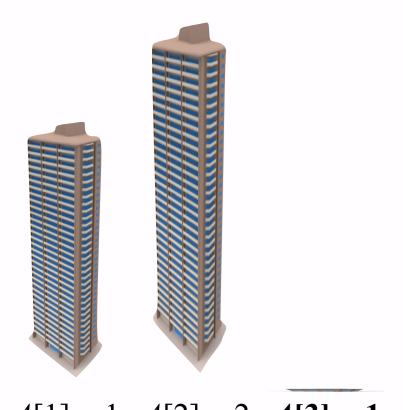




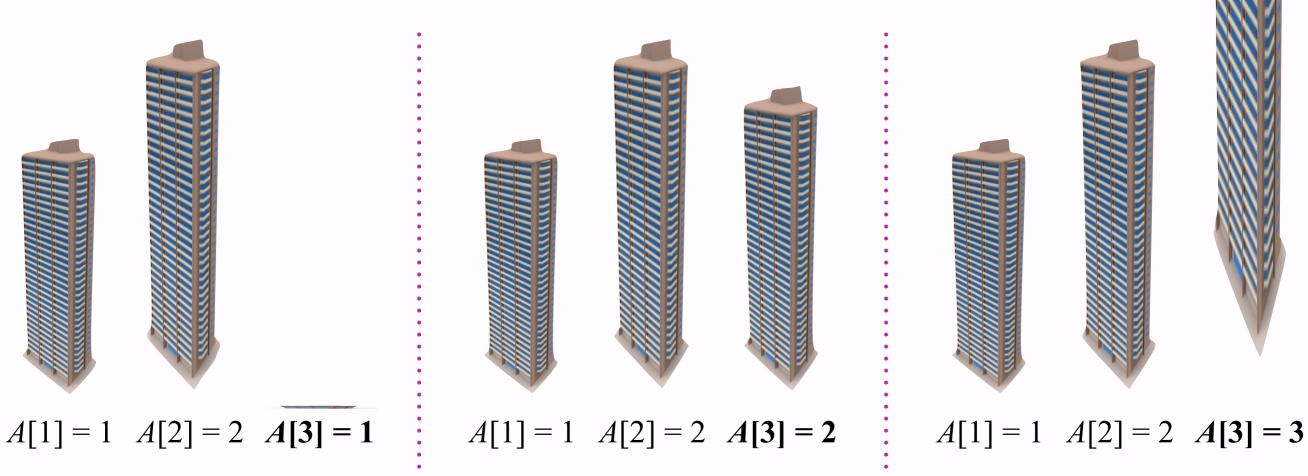


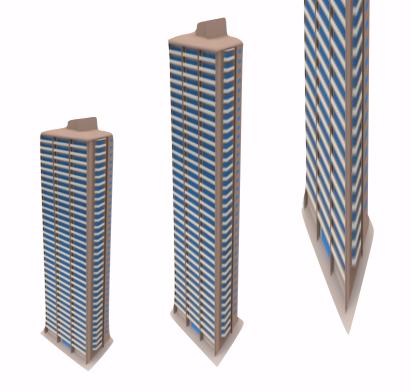
$$A[2] = 1 & 5 & A[3] = 1 \text{ or } 2$$

$$A[2] = 2 \text{ $ i > } A[3] = 1 \text{ or } 2 \text{ or } 3$$



$$A[1] = 1$$
 $A[2] = 2$ $A[3] = 1$





$$A[1] = 1$$
 $A[2] = 2$ $A[3] = 3$

分かりやすくするため A[0] = 0 として……

予想

A[i] は 1 から $\max(A[0], ..., A[i-1]) + 1$ のうち どれにでもなれるのでは?

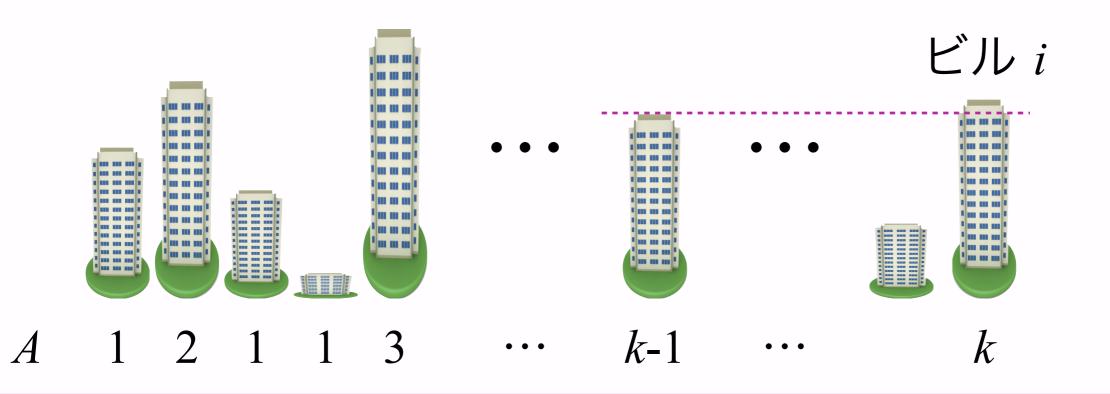
正しい!

 $\rightarrow A$ の性質は満点解法にも重要になってくるので証明も

略証

A[i] = kとする場合

A[j] = k-1 となる最大のjをとってきて, ビルi の高さをビルj より僅かに高いものとすればよい



略証

A[i] = k とする場合

A[j] = k-1 となる最大のjをとってきて, ビルiの高さをビルjより僅かに高いものとすればよい

ビルiとビルjの中間の高さのビルが存在しないようにする

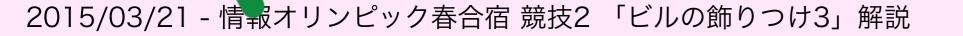
小課題 2

問題'

整数列 A' が与えられる。LIS の DP 配列が A' となるようなビルの高さの列が存在するか?

$1 \le A[i] \le \max(A[0], ..., A[i-1]) + 1$

かどうかをチェックすればよい



小課題3

/_/\

結局のところ

 $1 \le A[i] \le \max(A[0], ..., A[i-1]) + 1$

を満たす Aが何個あるかを数えればよい

もう少し直感的に言うと

最大値 $\max(A[0],...,A[i])$ が i=1,2,...,N で

高々1ずつ増えていく

挿入する数が決まる場合

たとえば B = (1, 2, 1, 4, 3) のとき ここで最大値が 2 から 4 に 飛んでるじゃないか! そんなの有り得るわけないだろ!! 挿入する数は3で確定

決まる場合 → 場合分け

B = (1, 2, 2, 1, 4, 2, 4, 3) 3 を入れたいけど 2 の後じゃないとダメ ここに入れられる

$$B = (1, 2, 1, 4, 3, 6)$$

3 も 5 も入れたい \rightarrow ダメ (0 通り)

B = (1, 2, 1, 5)

3 も 4 も入れたい → ダメ (0 通り)

挿入する数が決まらない場合

たとえば B = (1, 2, 1, 3, 2) のとき

そのままでも正しい!ヤッター! でもこういう時は 何を挿入すればいいんだろう?

条件さえ満たしていれば何でも OK!

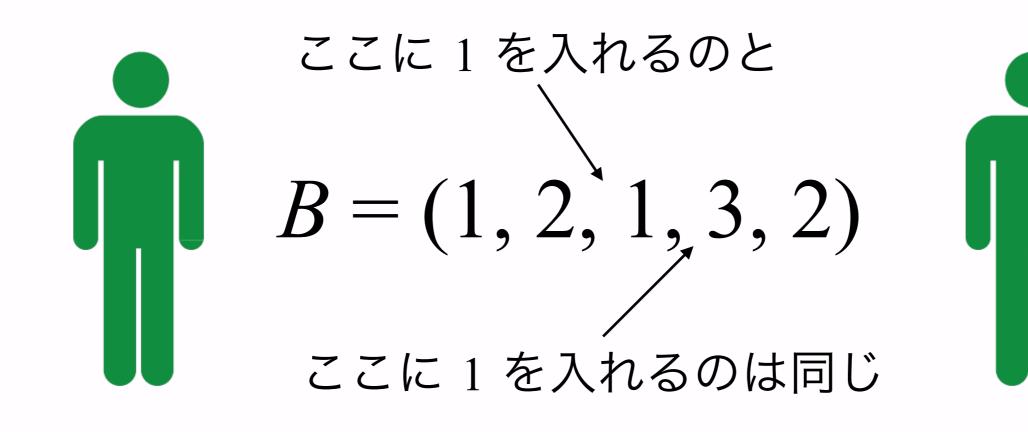
決まらない場合 → 数える

B[*i*] の後には

1 **から** max(B[1], ..., B[i]) + 1 までの数を挿入できる

$$B = (1, 2, 1, 3, 2)$$
たとえばここには 1, 2, 3 が入れられる

重複に注意



B[i] の後に B[i+1] を入れるのと B[i+1] の後に B[i+1] を入れるのが被る

解法まとめ

- ・B に数をひとつ挿入して A の候補を作る
- $1 \le A[i] \le \max(A[1], ..., A[i-1])+1$ なら OK
- ・挿入する数が決まる場合と決まらない場合に分ける
- ・それぞれさらに場合分け + 数え上げ
- O(N)

得点分布

