Problem Tutorial: "Avg"

If k^{x} is not divisible by n for any $x>0$ (or, equivalently, if n has a prime divisor that k doesn't have), no sequence of steps exists. To prove that, consider an array $A=(0,0, \ldots, 0,0,1)$: each element of this array must be equal $\frac{1}{n}$ in the end, but after x steps we can only obtain rational values whose denominators are divisors of k^{x}.

Otherwise, a valid sequence always exists, and we can construct it inductively. If $n=k$, take $b_{i}=i$. Otherwise, find any $d>1$ that is a divisor of k and $\frac{n}{k}$ (for example, $d=\operatorname{gcd}\left(k, \frac{n}{k}\right)$). Split n elements into groups of size d. For each $\frac{k}{d}$ consecutive groups, perform a step equalizing them. Now the elements in each group are equal. Finally, form d groups of size $\frac{n}{d}$, one element from each group, and solve the problem recursively for each group.
The case when n is not divisible by k is more interesting. It's not even obvious how to check if a sequence exists: for example, when $n=8$ and $k=6$, it seems that there is no solution. If you have any insights about this, please share!

