Problem Tutorial: "Bin"

Let's denote the given function as $f_{k}(n)$, then $f_{k}(n)=\sum_{i=1}^{\min \left(n-1\left\lfloor\frac{k+n}{2}\right\rfloor\right)} f_{k}(i) \cdot f_{k}(n-i)$.
Consider the following problem: we are given n integers $a_{0}, a_{1}, \ldots, a_{n-1}$ one by one, and after we get each a_{i}, we need to respond with $c_{i}=\sum_{j=0}^{i} a_{j} a_{i-j}$. If we can solve this problem in $O(T(n))$, we can solve the original problem in $O(T(n)+n k)$. Let's concentrate on this problem then.

If we are given all values of a_{i} in advance, we can just convolve the sequence with itself using NTT in $O(n \log n)$, however, the main difficulty lies in finding the coefficients of the convolution on the fly.

Let $f(L, R)$ be a recursive function that solves the problem for all $i \in[L ; R)$, assuming that we already have coefficients up to $i-1$-th, and also b_{i} for $i \in[L ; R)$ has been calculated as $b_{i}=\sum_{j=i-L+1}^{L-1} a_{j} a_{i-j}$.
If $R-L=1$, read a_{L} and respond with $c_{L}=b_{L}+2 a_{0} a_{L}$ if $L>0$, and with $c_{0}=a_{0}^{2}$ otherwise.
If $R-L>1$, find $M=\left\lceil\frac{L+R}{2}\right\rceil$ and call $f(L, M)$ first. Now we want to call $f(M, R)$, but we need to recalculate b before that. If $L>0$, convolve $a_{L}, a_{L+1}, \ldots, a_{M-1}$ and $a_{0}, a_{1}, \ldots, a_{M-L-1}$ using NTT, then add corresponding coefficients of this convolution to b_{i} for $i \geq M$. Otherwise, if $L=0$, just convolve $a_{0}, a_{1}, \ldots, a_{M-1}$ with itself and replace b with the result.
Time complexity of this solution is $O\left(n \log ^{2} n\right)$.

