Problem Tutorial: "Div"

Multiply both sides by $(x-1)$. We need to count $x>1$ such that $P_{0}(x)=d_{0} x^{b_{0}}+d_{1} x^{b_{1}}+\ldots+d_{k-1} x^{b_{k-1}}$ is divisible by $x^{m}-1$ (check $x=1$ separately).
Taking $P_{0}(x)$ modulo $x^{m}-1$ as a polynomial, we'll get $P(x)=d_{0} x^{b_{0} \bmod m}+d_{1} x^{b_{1} \bmod m}+\ldots+d_{k-1} x^{b_{k-1} \bmod m}$. If $P(x) \equiv 0$, the answer is infinite. Otherwise, let's count $x>1$ such that $P(x)$ is divisible by m.
Let's rewrite $P(x)$ as $P(x)=e_{0}+e_{1} x+\ldots+e_{m-1} x^{m-1}$. Note that if $x>\max \left(\left|e_{0}\right|,\left|e_{1}\right|, \ldots,\left|e_{m-1}\right|\right)+1$, then $P(x) \neq 0$ and $\left|e_{0}\right|+\left|e_{1} x\right|+\ldots+\left|e_{m-1}\right| x^{m-1}<x^{m}-1$, therefore, we don't need to consider such x. Now we only need to consider $O(n)$ values of x.
Let's fix x and transform $P(x)$ as follows:

- if there's some i such that $e_{i} \geq x$, subtract x from e_{i} and add 1 to $e_{(i+1) \bmod m}$;
- if there's some i such that $e_{i} \leq-x$, add x to e_{i} and subtract 1 from $e_{(i+1) \bmod m}$;
- otherwise, stop the process.

This transformation keeps the value of $P(x)$ the same. Each step decreases the sum of $\left|e_{i}\right|$ by at least $x-1$, therefore we'll do $O\left(\frac{n}{x}\right)$ steps.
After this process, we have $\left|e_{i}\right|<x$ for all i, and $P(x)$ is divisible by $x^{m}-1$ if one of the following applies: all $e_{i}=0$, all $e_{i}=x-1$, or all $e_{i}=-x+1$.
We can perform all steps efficiently using built-in associative containers with $O(\log n)$ overhead and rollback changes done for some x before proceeding to the next x. Since there are $\sum_{x=2}^{n} O\left(\frac{n}{x}\right)=O(n \log n)$ steps to be done, the overall time complexity is $O\left(n \log ^{2} n\right)$.

