



## Problem Tutorial: "Exp"

This problem might be well-known in some countries, but how do other countries learn about such problems if nobody poses them?

Consider a polynomial  $P(y) = p_0 + p_1 y + \ldots + p_k y^k$ . If we find the coefficients  $q_i$  of  $Q(y) = P^n(y)$ , the answer is  $\sum_{i=0}^{nk} q_i \cdot \min(i, x)$ . Since the sum of  $p_i$  is 1, we can also rewrite this as  $\sum_{i=0}^{x-1} q_i \cdot i + (1 - \sum_{i=0}^{x-1} q_i) \cdot x$ . Hence, we just need to find the first x coefficients of  $P^n(y)$ .

The title of this problem, Exp, stands for expected, experience, and exponentiation.

Consider the derivative of  $P^{n+1}(y)$  and find two different expressions for it:

• 
$$(P^{n+1}(y))' = (P(y)P(y)\dots P(y))' = (n+1)P^n(y)P'(y) = A;$$

• 
$$(P^{n+1}(y))' = (P^n(y)P(y))' = (P^n(y))'P(y) + P^n(y)P'(y) = B.$$

Since A = B, we have  $nP^n(y)P'(y) = (P^n(y))'P(y)$ . Consider the coefficient of  $y^i$  in both parts of this equation:

- in the left part, it's  $n(q_ip_1 + 2q_{i-1}p_2 + \ldots + kq_{i-k+1}p_k);$
- in the right part, it's  $(i+1)q_{i+1}p_0 + iq_ip_1 + \ldots + (i-k+1)q_{i-k+1}p_k$ .

It turns out that we can derive  $q_{i+1}$  from the equality of these two expressions if we know  $q_0, q_1, \ldots, q_i$ . Each coefficient can be calculated in O(k), hence time complexity is O(xk).