Problem Tutorial: "Flip"

Consider strings of length $2 n$ with n letters A and n letters B , corresponding to team assignments. What is the probability that a string s corresponds to the final team assignment? Let's define l_{A} be the position of the last occurrence of A , and l_{B} similarly. Then the probability $p(s)=2^{-\min \left(l_{A}, l_{B}\right)}$.
We need to find the total probability of strings such that $s_{a_{1}}=s_{a_{2}}=\ldots=s_{a_{k}}=\mathrm{A}$.
Let's classify strings on the value of $m=\min \left(l_{A}, l_{B}\right)$ (all such strings have the same probability).
If $m=a_{k}$, then $s_{m}=\mathrm{A}$ and the number of such strings is $\binom{m-k}{n-k}$.
If $a_{i}<m<a_{i+1}$ or $m<a_{1}$ (then let $i=0$) or $m>a_{k}$, then $s_{m}=\mathrm{B}$ (in the $m>a_{k}$ case, this is not the only option) and the number of such strings is $\binom{m-i}{n-1}$. If we find prefix sums of values $\binom{j}{n-1} \cdot 2^{-j}$, we can answer such queries in $O(1)$.
If $m>a_{k}$, then $s_{m}=\mathrm{A}$ is also possible, and the number of such strings is $\binom{m-k-1}{n-k-1}$. If we find prefix sums of values $\binom{j}{n-k-1} \cdot 2^{-j}$ for each k appearing in the input, we can answer such queries in $O(1)$. There are only $O(\sqrt{n})$ different values of k.
Overall time complexity is $O(n \sqrt{n})$.

