Problem Tutorial: "Hit"

Let's start with placing points so that each segment contains at least one point greedily: while there's at least one uncovered segment, find the one with the smallest r_{i} and place a point at r_{i}. Suppose that the largest number of points inside one of the given segments is t in this placement.
It turns out that the answer is either t or $t-1$. Indeed, consider points $x_{1}, x_{2}, \ldots, x_{t}$ inside the segment $\left[l_{i}, r_{i}\right]$ with the largest number of points. Consider the rightmost point with coordinate less than l_{i} in the optimal placement. Then the next point to the right of it has to be at coordinate at most x_{2}, the second next point has to be at coordinate at most x_{3}, \ldots, the $t-1$-th next point has to be at coordinate at most x_{t}. Hence, segment $\left[l_{i}, r_{i}\right]$ will contain at least $t-1$ points.
It remains to check if the answer is $t-1$. Let's compress the ends of segments and go through points from right to left. For each point x, let's answer the following question: if this point is included into the set, is it possible to include some points with coordinates more than x so that each segment with $r_{i} \geq x$ contains at least one point, and each segment contains at most $t-1$ points? We'll call points satisfying this condition legal.
For each point x, let w_{x} be the rightmost legal point such that there are no segments strictly inside $\left[x, w_{x}\right]$. To check the condition for a particular point x, let's start with finding w_{x}. After that, find $y=w(w(\ldots w(x) \ldots))(t-1$ times $)$. If there exists a segment containing both points x and y, this segment would contain t points if point x was placed, thus, point x is illegal. Otherwise, point x is legal.

Finally, if the point to the left of all segments is legal, we can form a sequence of legal points that is a valid solution for $t-1$, otherwise, the answer is t and we output the initial greedy placement.

