Problem Tutorial: "Kilk"

WLOG assume $x \leq y$. It's not hard to compute the smallest possible length of the longest substring consisting of equal letters: in fact, it is $k=l(x, y)=\left\lfloor\frac{x+y}{x+1}\right\rfloor$.
Let's fix some value of k and find the required number of strings for all pairs (x, y) such that $l(x, y)=k$. Let $a_{k}(x, y)$ be the number of strings that have x letters ' a ' and y letters ' b ', don't have substrings of equal letters of length more than k, and end with 'a'. Let $b_{k}(x, y)$ be defined similarly, except that here we count strings ending with 'b'. Then, the answer for a pair (x, y) is $a_{f(x, y)}(x, y)+b_{f(x, y)}(x, y)$.
Trying all possible lengths of the substring of equal letters at the end of the string, we get the following formulas:

- $a_{k}(x, y)=\sum_{i=1}^{\min (k, x)} b_{k}(x-i, y) ;$
- $b_{k}(x, y)=\sum_{i=1}^{\min (k, y)} a_{k}(x, y-i)$.

Computed in a straightforward way, we can compute the answers for all pairs (x, y) with $x, y \leq n$ in $O\left(n^{4}\right)$.
We can use the following two optimizations to speed it up to $O\left(n^{2} \log n\right)$:

- use prefix sums to find $a_{k}(x, y)$ faster, or just notice that $a_{k}(x, y)=a_{k}(x-1, y)+b_{k}(x-1, y)-b_{k}(x-1-k, y)$ (almost follows from the definition);
- note that we only need $x \leq \frac{2 n}{k}$, therefore, the number of interesting DP states is about $\sum_{k=1}^{n} \frac{2 n^{2}}{k}=O\left(n^{2} \log n\right)$.

Time limit is a bit (unnecessarily) strict, so one needs to be careful with implementation.

