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Abstract. It is proved that, for any e > 0 and n > n0ðeÞ, every set of n points in the plane
has at most n

11e�3
5e�1þ� triples that induce isosceles triangles. (Here e denotes the base of the

natural logarithm, so the exponent is roughly 2:136.) This easily implies the best currently
known lower bound, n

4e
5e�1��, for the smallest number of distinct distances determined by n

points in the plane, due to Solymosi–Cs. Tóth and Tardos.

1. Introduction

In 1946, Erd}oos [5] raised some notoriously difficult questions about the distri-
bution of distances determined by finite point sets. In particular, he asked what
the smallest number of distinct distances determined by n points in the plane is.
Denoting this number by gðnÞ, he conjectured that gðnÞ � cn=

ffiffiffiffiffiffiffiffiffiffi
log n

p
. This value is

obtained by the
ffiffiffi
n

p
by

ffiffiffi
n

p
grid. The best currently known lower bound follows by

a combination of the results of Solymosi–Cs. Tóth [12] and G. Tardos [17]: for
every e > 0 there exists a constant ce > 0 such that

gðnÞ � ce n
4e

5e�1��
� �

: ð1Þ

Here and later in this note, e stands for the base of the natural logarithm.
In a series of papers, Erd}oos and Purdy [6], [7] initiated the investigation of the

distribution of triangles (more generally, simplices) in finite point sets. Pach and
Sharir [10] pointed out that it readily follows from a result of Szemerédi and
Trotter [16] that the maximum number of triples in a set of n points in the plane
that induce isosceles triangles is Oðn7=3Þ.

The aim of this paper is to improve this bound. Here and in the sequel, we use
the symbols Oe and Xe to indicate that the hidden constants in the O and X
notations, resp., depend on the choice of the parameter e > 0.
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Theorem 1. For any e > 0, the number of isosceles triangles spanned by three points
of an n-element point set in the plane is

Oe n
11e�3
5e�1þe

� �
¼ Oðn2:137Þ:

The above two problems are intimately related. Indeed, if a point set P de-
termines at most g distinct distances, then around each point p 2 P the remaining
n� 1 points lie on g concentric circles. If the numbers of points sitting on these
circles are n1; n2; . . . ; ng, then there are precisely

Pg
i¼1

ni
2

� �
� g ðn�1Þ=g

2

� �
isosceles

triangles whose two equal sides meet at p. Thus, the total number of isosceles
triangles is at least n3

2g � Oðn2Þ. Therefore, any upper bound on the number
of isosceles triangles yields a lower bound on gðnÞ. In particular, Theorem 1
immediately implies inequality (1). In this sense, our Theorem 1 can be regarded
as a strengthening of (1).

Theorem 1, in turn, follows from a general upper bound for the number of
incidences between a set of points and a set of circles.

Theorem 2. Let P be a set of n distinct points and let C be a set of ‘ distinct circles
in the plane. Let Q denote the set of centers of the circles in C and let jQj ¼ m.

Then, for any 0 < a < 1=e, the number I of incidences between the points in P
and the circles of C is

Oa nþ ‘þ n
2
3‘

2
3 þ n

4
7m

1þa
7 ‘

5�a
7 þ n

12þ4a
21þ3am

3þ5a
21þ3a‘

15�3a
21þ3a þ n

8þ2a
14þam

2þ2a
14þa‘

10�2a
14þa

� �
:

Fig. 1
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Figure 1 and Table 1 give the best known upper bounds on the number
of incidences between n points and ‘ circles around m centers in the plane.
Figure 1 defines regions according to the different settings of the parameters
n, m, and ‘, and Table 1 gives the best known bounds for each of these
regions. We have 0 < a < 1=e and e > 0 in Table 1. As is illustrated by
Figure 1, each term of the expression in Theorem 1 provides the best known
bound in some nonempty region of the parameters. For all but the first term,
our bound is new in the corresponding region or at least in some part of it.
In two further regions, the trivial bound nm or the estimate n6=11þ3�‘9=11��

found by Aronov and Sharir [2] are the best currently known bounds for the
number of incidences.

It is worth pointing out the n ¼ m special case of Theorem 2, which is needed
for the proof of Theorem 1. Even this special case is a generalization of the main
result (Theorem 1) in [13]. (This latter result can also be considered the n ¼ m
special case of Proposition 2.1 below.)

Corollary 3. Let P be a set of n distinct points and C be a set of ‘ distinct circles in
the plane.

If among the centers of the circles in C there are at most n distinct points, then
for any 0 < a < 1=e the number of incidences between the points in P and the circles
in C is

Oa n
5þ3a
7þa ‘

5�a
7þa þ n

� �
:

Proof. We use Theorem 2 to bound the number of incidences. Using m � n, we
can eliminate in the bound the number m of circle centers. The expressions ob-
tained from the fifth and first terms of the bound in Theorem 2 are the two
components of the estimate in Corollary 3. The first and more complicated of

Table 1

Region Best known bound Source

A O(n) [4,10]

B O n
2
3‘

2
3

� �
[2]

B0 O n
2
3‘

2
3

� �
Theorem 1

C Oa n
4
7m

1þa
7 ‘

5�a
7

� �
Theorem 1

D Oa n
12þ4a
21þ3am

3þ5a
21þ3a‘

15�3a
21þ3a

� �
Theorem 1

E Oa n
8þ2a
14þam

2þ2a
14þa‘

10�2a
14þa

� �
Theorem 1

F O� n
6
11þ3e‘

9
11�e

� �
[2]

G Oð‘Þ [4,10]
G0 Oð‘Þ Theorem 1
H nm trivial
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these components dominates all the missing terms, whenever ‘ < nð9�aÞ=ð5�aÞ.
Notice that the line m ¼ n is relevant here, and, as is indicated in Figure 1, the
only regions it passes through are F, D, and H. For ‘ � nð9�aÞ=ð5�aÞ, the trivial
bound nm � n2 is better than the one in Corollary 3. (

The proof of Theorem 2 is based on the same ideas as [12] and [13]. In
particular, all our bounds crucially depend on the following lemma from [13],
which is a slight generalization of a result of Tardos [17].

Given a real matrix A, let SðAÞ denote the set of all reals that can be written as
the sum of two distinct entries from the same row of A.

Lemma 4. [13]. For any 0 < a < 1=e; there exists an integer s > 1 with the fol-
lowing property. For every N � k � 1 and for every N by s real matrix A which does
not have two equal entries in the same row and in which for all but at most k � 1 of
the indices i ¼ 1; . . . ;N � 1; all entries of the i-th row are smaller than all entries in
the next row, we have

jSðAÞj ¼ Xa
N

k1�aMa

� �
;

where M is the maximum multiplicity of any entry in A.
It is not clear whether Lemma 4 holds for other values of a; larger than 1=e. I.

Ruzsa (personal communication) showed that it is certainly false for a � 1=2. If
Lemma 4 remains true for any a � 1=e, we obtain that the number of isosceles
triangles induced by triples of an n-element point set in the plane is
Oaðnð11�3aÞ=ð5�aÞÞ.

Note that in Theorems 1 and 2, in Corollary 3, and in Lemma 4, the constants
hidden in the Oe, Oa, Xa notations can be replaced by 1, provided that n is
sufficiently large. For example, for any e > 0, there exists a threshold n0ðeÞ such
that the number of isosceles triangles determined by an n-element point set in the
plane is at most n

11e�3
5e�1þe, whenever n � n0ðeÞ. To see this, it is enough to apply

Theorem 1 with e=2 in place of e.

2. An Important Special Case

The aim of this section is to establish the following important special case of
Theorem 2, where C consists of the same number, k, of concentric circles around
each element of Q.

Proposition 2.1. Let P be a set of n distinct points, let Q be a set of m distinct points
in the plane, and let C be a family of mk circles, consisting of k concentric circles
around each point in Q.
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Then, for any 0 < a < 1=e, the number of incidences between the points in P and
the circles in C is

Oa nþ mk þ n
2
3m

2
3k

2
3 þ n

4
7m

6
7k

5�a
7 þ n

12þ4a
21þ3am

18þ2a
21þ3ak

15�3a
21þ3a þ n

8þ2a
14þam

12
14þak

10�2a
14þa

� �
:

Let I be the set of all pairs ðp; qÞ such that p 2 P , q 2 Q, and P is incident to
one of the circles around q. We have to give an upper bound on jI j.

First, we outline the proof of Proposition 2.1.
We use three parameters, a; b; s � 2, to partition I as follows. The value of s

will solely depend on the choice of 0 < a < 1=e; so it will be regarded as a con-
stant. The values of a and b will depend on n, m, and k.

For any ðp; qÞ 2 I ; we consider the number of points in P on the line lpq
connecting p and q, which are incident to a circle in C around q. We use the
Szemerédi–Trotter theorem (Lemma 2.3 below) to bound the number of pairs, for
which this is greater than our parameter a. By losing just a few more pairs from I ,
we partition the remaining pairs into s-tuples and bound their number. The ele-
ments of an s-tuple will correspond to s distinct points of P, incident to the same
circle in C. If we can choose two of these points so that their perpendicular
bisector contains fewer than b elements of Q, we connect them along the circle C.
In this way, we obtain a so-called topological graph, a graph C drawn by (possibly
crossing) continuous arcs. Then we apply Székely’s lemma on crossing numbers
(Lemma 2.2) to bound the number of edges of C and thus the number of s-tuples
satisfying this condition. To bound the number of remaining s-tuples, we use
Lemma 4 and the Szemerédi–Trotter theorem again.

Next, we work out the details. Let

I 0 ¼ ðp; qÞ 2 I : jfp0 2 lpq \ P : ðp0; qÞ 2 Igj � a:

For any q 2 Q; let Pq ¼ fp 2 P : ðp; qÞ 2 I 0g, and identify a set Dq of pairwise
disjoint circular arcs on the circles in C around q so that each arc contains
precisely s elements of Pq and together they cover all but at most kðs� 1Þ points of
Pq. We can assume without loss of generality that none of these arcs intersects a
fixed half-line lq emanating from q.

Call a line l rich if jl \ Qj � b. We say that an arc in Dq is good, if it contains
two points p; p0 2 Pq such that the perpendicular bisector of pp0 is not rich. Denote
by G the set of good arcs in [q2QDq, and let B ¼ [q2QDq n G be the set of all bad
arcs.

The proof is based on a special construction of a topological graph C, i.e., a
graph drawn in the plane by possibly crossing curvilinear edges. In our case, every
edge will be represented by a circular arc. We use edges that may pass through
vertices other than their endpoints. Two edges are said to cross, if they share a
point different from their endpoints.

Let the vertex set of C be P, and, for each good arc b 2 G, connect a single pair
of points, as follows. If b 2 Dq; choose two points p; p0 2 b \ Pq so that their
perpendicular bisector is not rich and connect them along b.
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The resulting topological graph C is not necessarily simple, i.e., it may contain
parallel edges connecting the same pair of points. However, it is not hard to
bound from above the multiplicity of these edges. All edges between two vertices p
and p0 are drawn along separate circles in C, whose centers lie on the perpen-
dicular bisector of pp0. If this line is not rich, there are fewer than b such edges. If
this line is rich, then by our construction p and p0 are not connected at all. Thus,
the maximum edge-multiplicity, mðCÞ, of C satisfies

mðCÞ < b:

Let cðCÞ denote the number of crossing pairs of edges in C. Slightly abusing
the standard terminology, in the sequel we call cðCÞ the crossing number of C. As
each crossing between two edges of C occurs at an intersection point of two circles
in C, we clearly have

cðCÞ � 2
jCj
2

� �
< m2k2:

On the other hand, the following useful generalization of a well known the-
orem of Ajtai et al. [1] and Leighton [8], due to L. Székely [15], provides a lower
bound for the crossing numbers.

Lemma 2.2. [15]. Let C be a topological multigraph with vertex set V ðCÞ and edge
set EðCÞ, in which every pair of vertices is connected by at most mðCÞ edges.

If jEðCÞj � 5mðCÞjV ðCÞj, then the crossing number of C satisfies

cðCÞ ¼ X
jEðCÞj3

mðCÞjV ðCÞj2

 !
:

Plugging the last two inequalities into Lemma 2.2, we conclude that the
number of good arcs satisfies

jGj ¼ jEðCÞj ¼ O jV ðCÞjmðCÞ þ c
1
3ðCÞm1

3ðCÞjV ðCÞj
2
3

� �
¼ O nbþ n

2
3m

2
3k

2
3b

1
3

� �
: ð2Þ

Now we focus on the set B of bad arcs and estimate their number. Fix
0 < a < 1=e and s so that they satisfy the conditions in Lemma4.Construct anNq by
s real matrix Aq, whereNq is the number of bad arcs inDq and each row corresponds
to a bad arc. Let the row of Aq assigned to a bad arc b 2 B \ Dq consist of the entries
c1; . . . ; cs; where b \ Pq ¼ fp1; . . . ; psg and ci is the angle of the smallest counter-
clockwise rotation that takes the reference half-line lq to the half-line qpi.

If the rows corresponding to the bad arcs on a circle follow each other in the
natural order, the matrix Aq meets the requirements of Lemma 4. By the definition
of I 0 and Pq, we have that the maximum multiplicity of any entry in Aq is Mq � a.

774 J. Pach and G. Tardos



All values in SðAqÞ are twice the angles of rich lines going through q, thus Lemma
4 implies that q is incident to XaðNq=ðk1�aaaÞÞ rich lines. Hence, the total number
of incidences between the points in Q and the rich lines is XaðjBj=ðk1�aaaÞÞ:

On the other hand, the Szemerédi-Trotter theorem gives an upper bound on
the same quantity.

Lemma 2.3. [16]. (i) The number of lines passing through at least b � 2 elements of
a set of m points in the plane is Oðm=bþ m2=b3Þ.

(ii) The number of incidences between m points in the plane and all lines passing
through at least b � 2 of them is Oðmþ m2=b2Þ.
(iii) The number of incidences between m points and ‘ lines in the plane is

Oðm2=3‘2=3 þ mþ ‘Þ.
Comparing Lemma 2.3 (ii) with the above lower bound for the same quantity,

we obtain

jBj ¼ Oa mk1�aaa þ m2k1�aaa=b2
� �

: ð3Þ

As each arc in Dq covers a constant number s of the points in Pq, and at most
ðs� 1Þk points are not covered, in view of the inequalities (2) and (3), we get

jI 0j ¼
X
q2Q

jPqj � sjGj þ sjBj þ ðs� 1Þmk

¼ Oa nbþ mk þ m2k1�aaa=b2 þ k
2
3m

2
3n

2
3b

1
3

� �
: ð4Þ

The term mk1�aaa in the upper bound on jBj is dominated by mk, if we choose our
parameter a so that it satisfies 2 � a � k. (Such a choice is impossible if k ¼ 1, but
in that case the bound in Proposition 2.1 is significantly worse than the previously
known bounds, cf. [4], [10], [2].)

It remains to bound the number of pairs ðp; qÞ 2 I n I 0. Now we use the
Szemerédi-Trotter theorem separately for P and Q. By Lemma 2.3 (i), for any
t � 2, the number of straight lines passing through more than t points of P is
Oðn=t þ n2=t3Þ. By Lemma 2.3 (iii), the number of incidences between these lines
and the m points of Q is

Oðmþ n=t þ n2=t3 þ n2=3m2=3=t2=3 þ n4=3m2=3=t2Þ:

Let It denote the number of pairs ð p; qÞ 2 I such that t < jfp0 2
lpq \ P : ðp0; qÞ 2 Igj � 2t. Clearly, each incidence counted above is responsible
for at most 2t pairs in It, whence

jItj ¼ Oðmt þ nþ n2=t2 þ n2=3m2=3t1=3 þ n4=3m2=3=tÞ:
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Using the fact that I n I 0 ¼
Sblogðk=aÞc

i¼0 I2ia, we obtain

jI n I 0j ¼ O mk þ n log k þ n2=a2 þ n2=3m2=3k1=3 þ n4=3m2=3=a
� �

:

It is not hard to get rid of the logarithmic factor in the last formula. To see
this, notice that the nþ n2=t2 terms in the bounds on jItj actually bound a value
proportional to the number of incidences between P and some lines going through
at least t points of P. By Lemma 2.3 (ii), the total number of such incidences for
any t � a is Oðnþ n2=a2Þ. (Alternatively, one can get rid of the extra logarithmic
factor by using the result of [2], which provides better bounds for I in all cases
where n log k would be the leading term.) Thus, we have

jI n I 0j ¼ O nþ mk þ n2=a2 þ n2=3m2=3k1=3 þ n4=3m2=3=a
� �

: ð5Þ

Putting (4) and (5) together, we get

jI j ¼ Oa nbþ mk þ n2=3m2=3k2=3b1=3 þ n2

a2
þ n4=3m2=3

a
þ m2k1�aaa

b2

� �
: ð6Þ

Note that the above bound holds for all k � a � 2 and b � 2. To minimize this
expression, set

a ¼ min k;max 2; n
10

14þam
�6

14þak
�5þa
14þa ; n

16
21þ3am

�4
21þ3ak

�15þ3a
21þ3a

� �� �
;

b ¼ max 2; n
�2
7 m

4
7k

1�3a
7 a

3a
7

� �
:

In case a ¼ k, we have I ¼ I 0 and Proposition 2.1 follows from (4). In all other
cases, the result is true by (6).

Notice that the third term, n2=3m2=3k2=3, is the sole leading term of Proposition
2.1 only if we chose b ¼ 2 and then it can be replaced by Oðn2=3m2=3k1=3 þ jEðCÞjÞ
where EðCÞ is the set of edges the topological graph C. We use this observation in
the next section.

3. Proof of Theorem 2

Partition Q into the sets

Q0 ¼ fq 2 Q : jfc 2 C : the center of c is qgj � ‘=mg;

Qi ¼ fq 2 Q : 2i�1‘=m < jfc 2 C : the center of c is qgj � 2i‘=mg;

for i � 1. We also partition C into the sets
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Ci ¼ fc 2 C : the center of c is in Qig;

for i � 0. Let C0
i denote the sets obtained from Ci by adding dummy circles to

bring the number of circles around each q 2 Qi up to ki ¼ b2i‘=mc. Clearly, we
have mi :¼ jQij � m=2i�1, and the values ‘i :¼ jC0

i j add up to Oð‘Þ.
Applying Proposition 2.1 to the system ðP ;Q0;C0

0Þ, we get that the number of
incidences between the points in P and the circles in C0

0 does not exceed the bound
in Theorem 2. For the systems ðP ;Qi;C0

iÞ, we obtain similar bounds, but their last
three terms are multiplied by some constant negative power of 2i. Notice that we
can assume Qi ¼ ; for i > log n, for a concentric family of circles has at most n
elements incident to at least one point in P. Hence, adding up the upper bounds
that follow from Proposition 2.1, we readily obtain a weaker version of the bound
in Theorem 2, in which the first three terms are multiplied by log n.

In the rest of this proof, we get rid of these unwanted logarithmic factors. In
the case of the first term, n, of the expression, this can be achieved by noticing that
for all settings of the parameters, when n log n would be the leading term, the
upper bound

Oeðnþ ‘þ n2=3‘2=3 þ n6=11þ3e‘9=11�eÞ

established by Aronov and Sharir [2] is better and gives Oðnþ n2=3‘2=3Þ incidences.
It is even easier to argue for the second term, as not only each miki ¼ ‘i is

bounded by Oð‘Þ, but we also have
P

i ‘i ¼ Oð‘Þ.
We have to work most for the third term, n2=3m2=3

i k2=3i ¼ Oðn2=3‘2=3Þ. In this

case, we have to look into the proof of Proposition 2.1. The term n2=3m2=3
i k2=3i can

be the dominant term for some i only if we choose the parameter b to be 2, and in

this case the term can be replaced by Oðn2=3m2=3
i k1=3i þ jEðCiÞjÞ, where Ci is a

certain topological graph constructed in the proof of Proposition 2.1. Notice,
however, that the union C of all topological graphs Ci, for which the parameter b
was set to be 2, is still a topological graph on n vertices, it still does not have any
parallel edges, and its crossing number is at most ‘2 (there are at most two
crossing pairs for each pair of circles in C). Thus, by Lemma 2.2, C has
Oðnþ n2=3‘2=3Þ edges. Using this bound, instead of bounding the number of edges
in each of the graphs Ci separately, we can replace the Oðn2=3‘2=3 log nÞ term with
Oðn2=3‘2=3Þ.

4. Proof of Theorem 1

The common endpoint of two equal sides of an isosceles triangle is called its apex.
(An equilateral triangle has three apices.) Consider an n-element point set P in the
plane, and let T be the set of ordered triples pqr that induce an isosceles triangle in
P, with apex q. Thus, jT j is equal to the number of isosceles triangles induced by
P, counted with multiplicities (equilateral triangles are counted six times, all other
isosceles triangles twice).
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For any pqr 2 T , let cðpqrÞ denote the circle centered at q, which passes
through p and r. We classify the elements of T according to the order of mag-
nitude of jcðpqrÞ \ P j, and bound the sizes of the classes separately. Setting a
threshold t :¼ nð1�aÞ=ð5�aÞ, let

T 0 ¼ fpqr 2 T : jcðpqrÞ \ P j � tg;

Ti ¼ fpqr 2 T : 2it � jcðpqrÞ \ P j � 2iþ1tg;

for i ¼ 0; 1; . . . ; blogðn=tÞc:
For any points p; q 2 P there are at most t � 1 choices for r such that pqr 2 T 0.

Thus, we have

jT 0j < n2t ¼ n
11�3a
5�a :

Let Ci ¼ fcðpqrÞ : pqr 2 Tig, for 0 � i � logðn=tÞ. Letting ‘i :¼ jCij, we have
at least 2it‘i incidences between the n points in P and the ‘i circles in Ci. Moreover,
the center of each circle in Ci is among the n points of P, so we can apply
Corollary 3, which yields

2it‘i ¼ Oa n
5þ3a
7þa ‘

5�a
7þa
i þ n

� �
;

for an arbitrary 0 < a < 1=e. Rearranging the terms, we get for every i that

‘i ¼ Oa
n

5þ3a
2þ2a

ð2itÞ
7þa
2þ2a

þ n
2it

 !
:

Using the fact that jTij < ð2iþ1tÞ2‘i, we obtain

jTij ¼ Oa
n

5þ3a
2þ2a

ð2itÞ
3�3a
2þ2a

þ 2itn

 !
¼ Oa

n
11�3a
5�a

2i
3�3a
2þ2a

þ n2

n=ð2itÞ

 !
:

Adding up these bounds, it follows that

jT j ¼ jT 0j þ
Xblogðn=tÞc

i¼0

jTij ¼ Oa n
11�3a
5�a þ n2

� �
¼ Oa n

11�3a
5�a

� �
;

as required.
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