Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

Solution

(2) Key observation: dropping the absolute values does not increase the answer.

Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

- Key observation: dropping the absolute values does not increase the answer.
- Simplify problem: drop the absolute values and maximize $(x_i x_j) c(i j) = (x_i c \cdot i) + (-x_j + c \cdot j).$

Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

- Key observation: dropping the absolute values does not increase the answer.
- Simplify problem: drop the absolute values and maximize $(x_i x_j) c(i j) = (x_i c \cdot i) + (-x_j + c \cdot j).$
 - Keep track of largest value y of $-x_j + c \cdot j$ seen so far.

Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

- Key observation: dropping the absolute values does not increase the answer.
- Simplify problem: drop the absolute values and maximize $(x_i x_j) c(i j) = (x_i c \cdot i) + (-x_j + c \cdot j).$
 - Keep track of largest value y of $-x_j + c \cdot j$ seen so far.
 - Answer to simplified problem is $x_i c \cdot i + y$.

Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

- Key observation: dropping the absolute values does not increase the answer.
- Simplify problem: drop the absolute values and maximize $(x_i x_j) c(i j) = (x_i c \cdot i) + (-x_j + c \cdot j).$
 - Keep track of largest value y of $-x_j + c \cdot j$ seen so far.
 - Answer to simplified problem is $x_i c \cdot i + y$.
- 3 To solve original problem, separately solve variant for $(x_j x_i) c(i j)$ the same way and take largest of the two.

Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

- Key observation: dropping the absolute values does not increase the answer.
- Simplify problem: drop the absolute values and maximize $(x_i x_j) c(i j) = (x_i c \cdot i) + (-x_j + c \cdot j).$
 - Keep track of largest value y of $-x_j + c \cdot j$ seen so far.
 - Answer to simplified problem is $x_i c \cdot i + y$.
- 3 To solve original problem, separately solve variant for $(x_j x_i) c(i j)$ the same way and take largest of the two.
- Time complexity O(n).

Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

- Key observation: dropping the absolute values does not increase the answer.
- Simplify problem: drop the absolute values and maximize $(x_i x_j) c(i j) = (x_i c \cdot i) + (-x_j + c \cdot j).$
 - Keep track of largest value y of $-x_j + c \cdot j$ seen so far.
 - Answer to simplified problem is $x_i c \cdot i + y$.
- 3 To solve original problem, separately solve variant for $(x_j x_i) c(i j)$ the same way and take largest of the two.
- Time complexity O(n).
- More complicated solutions using balanced search trees or range trees also possible.

Problem

Given integers x_1, \ldots, x_n , find, for each *i*, the maximum of $|x_i - x_j| - c|i - j|$ over $j \le i$.

Solution

- Key observation: dropping the absolute values does not increase the answer.
- Simplify problem: drop the absolute values and maximize $(x_i x_j) c(i j) = (x_i c \cdot i) + (-x_j + c \cdot j).$
 - Keep track of largest value y of $-x_j + c \cdot j$ seen so far.
 - Answer to simplified problem is $x_i c \cdot i + y$.
- 3 To solve original problem, separately solve variant for $(x_j x_i) c(i j)$ the same way and take largest of the two.
- Time complexity O(n).
- More complicated solutions using balanced search trees or range trees also possible.

Statistics at 4-hour mark: 626 submissions, 88 accepted, first after 00:04