Problem

Given a vertex-weighted graph, color k vertices red and $n-k$ vertices blue such that every shortest path from 1 to n has a monochromatic edge.

Solution

Problem

Given a vertex-weighted graph, color k vertices red and $n-k$ vertices blue such that every shortest path from 1 to n has a monochromatic edge.

Solution

(1) Dijkstra's algorithm finds all edges that are part of some shortest path from 1 to n.

Problem

Given a vertex-weighted graph, color k vertices red and $n-k$ vertices blue such that every shortest path from 1 to n has a monochromatic edge.

Solution

(1) Dijkstra's algorithm finds all edges that are part of some shortest path from 1 to n.
(2) These edges form a directed acyclic graph. Find a topological ordering.

Problem

Given a vertex-weighted graph, color k vertices red and $n-k$ vertices blue such that every shortest path from 1 to n has a monochromatic edge.

Solution

(1) Dijkstra's algorithm finds all edges that are part of some shortest path from 1 to n.
(2) These edges form a directed acyclic graph. Find a topological ordering.
(3) Color the first k vertices in the ordering red, and the remaining ones blue:

- A shortest path from 1 to n now only switches between red and blue once, so every shortest path on 3 or more vertices must have a monochromatic edge.

C - Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and $n-k$ vertices blue such that every shortest path from 1 to n has a monochromatic edge.

Solution

(1) Dijkstra's algorithm finds all edges that are part of some shortest path from 1 to n.
(2) These edges form a directed acyclic graph. Find a topological ordering.
(3) Color the first k vertices in the ordering red, and the remaining ones blue:

- A shortest path from 1 to n now only switches between red and blue once, so every shortest path on 3 or more vertices must have a monochromatic edge.
(9) Special case: this does not work if there is a direct edge from 1 to n.

C - Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and $n-k$ vertices blue such that every shortest path from 1 to n has a monochromatic edge.

Solution

(1) Dijkstra's algorithm finds all edges that are part of some shortest path from 1 to n.
(2) These edges form a directed acyclic graph. Find a topological ordering.
(3) Color the first k vertices in the ordering red, and the remaining ones blue:

- A shortest path from 1 to n now only switches between red and blue once, so every shortest path on 3 or more vertices must have a monochromatic edge.
(1) Special case: this does not work if there is a direct edge from 1 to n.
- Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
- We only need to make sure 1 and n get the same color.

C - Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and $n-k$ vertices blue such that every shortest path from 1 to n has a monochromatic edge.

Solution

(1) Dijkstra's algorithm finds all edges that are part of some shortest path from 1 to n.
(2) These edges form a directed acyclic graph. Find a topological ordering.
(3) Color the first k vertices in the ordering red, and the remaining ones blue:

- A shortest path from 1 to n now only switches between red and blue once, so every shortest path on 3 or more vertices must have a monochromatic edge.
(9) Special case: this does not work if there is a direct edge from 1 to n.
- Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
- We only need to make sure 1 and n get the same color.
- Always possible, except if $n=2$ and $k=1$.

C - Customs Controls

Problem

Given a vertex-weighted graph, color k vertices red and $n-k$ vertices blue such that every shortest path from 1 to n has a monochromatic edge.

Solution

(1) Dijkstra's algorithm finds all edges that are part of some shortest path from 1 to n.
(2) These edges form a directed acyclic graph. Find a topological ordering.
(3) Color the first k vertices in the ordering red, and the remaining ones blue:

- A shortest path from 1 to n now only switches between red and blue once, so every shortest path on 3 or more vertices must have a monochromatic edge.
(9) Special case: this does not work if there is a direct edge from 1 to n.
- Since graph is vertex-weighted, edge from 1 to n is the only shortest path.
- We only need to make sure 1 and n get the same color.
- Always possible, except if $n=2$ and $k=1$.

Statistics at 4-hour mark: 67 submissions, 15 accepted, first after 01:39

