Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}.

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}. - If $\sum_{i=1}^{n} z_{i} \geq k$ then $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=0$.

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}.

- If $\sum_{i=1}^{n} z_{i} \geq k$ then $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=0$.
- Otherwise $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=1+p \cdot E_{z_{2} z_{3} \ldots z_{n} 1}+(1-p) \cdot E_{z_{2} z_{3} \ldots z_{n}}$.

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}.

- If $\sum_{i=1}^{n} z_{i} \geq k$ then $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=0$.
- Otherwise $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=1+p \cdot E_{z_{2} z_{3} \ldots z_{n} 1}+(1-p) \cdot E_{z_{2} z_{3} \ldots z_{n} 0}$.
(3) This is a system of linear equations in the 2^{n} unknowns $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$.

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}.

- If $\sum_{i=1}^{n} z_{i} \geq k$ then $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=0$.
- Otherwise $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=1+p \cdot E_{z_{2} z_{3} \ldots z_{n} 1}+(1-p) \cdot E_{z_{2} z_{3} \ldots z_{n} 0}$.
(3) This is a system of linear equations in the 2^{n} unknowns $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$.
- Solve using Gaussian elimination to find our answer $E_{00 \ldots} . .0$.

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}.

- If $\sum_{i=1}^{n} z_{i} \geq k$ then $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=0$.
- Otherwise $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=1+p \cdot E_{z_{2} z_{3} \ldots z_{n} 1}+(1-p) \cdot E_{z_{2} z_{3} \ldots z_{n} 0}$.
(3) This is a system of linear equations in the 2^{n} unknowns $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$.
- Solve using Gaussian elimination to find our answer $E_{00 \ldots} . .0$.
- Time complexity $O\left(2^{3 n}\right)$.

F - Fortune From Folly

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}.

- If $\sum_{i=1}^{n} z_{i} \geq k$ then $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=0$.
- Otherwise $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=1+p \cdot E_{z_{2} z_{3} \ldots z_{n} 1}+(1-p) \cdot E_{z_{2} z_{3} \ldots z_{n}}$.
(3) This is a system of linear equations in the 2^{n} unknowns $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$.
- Solve using Gaussian elimination to find our answer $E_{00 \ldots} \ldots$.
- Time complexity $O\left(2^{3 n}\right)$.
(1) Implementation note: represent the bit string $z_{1} z_{2} \ldots z_{n}$ as an n-bit number Z

F - Fortune From Folly

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}.

- If $\sum_{i=1}^{n} z_{i} \geq k$ then $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=0$.
- Otherwise $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=1+p \cdot E_{z_{2} z_{3} \ldots z_{n} 1}+(1-p) \cdot E_{z_{2} z_{3} \ldots z_{n}}$.
(3) This is a system of linear equations in the 2^{n} unknowns $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$.
- Solve using Gaussian elimination to find our answer $E_{00 \ldots} \ldots$.
- Time complexity $O\left(2^{3 n}\right)$.
(1) Implementation note: represent the bit string $z_{1} z_{2} \ldots z_{n}$ as an n-bit number Z
- $z_{2} z_{3} \ldots z_{n} 0$
$(\mathrm{Z} \gg 1) \mathrm{OR}(\mathrm{b} \ll(\mathrm{n}-1))$

F - Fortune From Folly

Problem

In infinite random binary sequence $x_{1}, x_{2}, x_{3}, \ldots$ where each $x_{i}=1$ with probability p (independently), what is expected first value of i such that $x_{i}+x_{i-1}+\ldots+x_{i-n+1} \geq k$?

Solution

(1) At any point, only the n most recent x_{i} 's matter.
(2) Let $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$ be expected \#steps until k ones, if most recent x_{i} 's are z_{1}, \ldots, z_{n}.

- If $\sum_{i=1}^{n} z_{i} \geq k$ then $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=0$.
- Otherwise $E_{z_{1} z_{2} z_{3} \ldots z_{n}}=1+p \cdot E_{z_{2} z_{3} \ldots z_{n} 1}+(1-p) \cdot E_{z_{2} z_{3} \ldots z_{n}}$.
(3) This is a system of linear equations in the 2^{n} unknowns $E_{z_{1} z_{2} z_{3} \ldots z_{n}}$.
- Solve using Gaussian elimination to find our answer $E_{00 \ldots} \ldots$.
- Time complexity $O\left(2^{3 n}\right)$.
(1) Implementation note: represent the bit string $z_{1} z_{2} \ldots z_{n}$ as an n-bit number Z
- $z_{2} z_{3} \ldots z_{n} 0$
($\mathrm{Z} \gg 1$) $0 \mathrm{R}(\mathrm{b} \ll(\mathrm{n}-1))$

Statistics at 4-hour mark: 57 submissions, 27 accepted, first after 00:31

