Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.

I - Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.
(2) Let s be the number of indices $1 \leq i<n$ such that A_{i} is a permutation of B_{i}.

I - Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.
(2) Let s be the number of indices $1 \leq i<n$ such that A_{i} is a permutation of B_{i}.
(3) Then the number of ways is $2^{s}-1$:

I - Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.
(2) Let s be the number of indices $1 \leq i<n$ such that A_{i} is a permutation of B_{i}.
(3) Then the number of ways is $2^{s}-1$:

- breaking up a at any non-empty subset of these indices results in a valid separation

- Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.
(2) Let s be the number of indices $1 \leq i<n$ such that A_{i} is a permutation of B_{i}.
(3) Then the number of ways is $2^{s}-1$:

- breaking up a at any non-empty subset of these indices results in a valid separation
- breaking at any other index results in an invalid separation

- Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.
(2) Let s be the number of indices $1 \leq i<n$ such that A_{i} is a permutation of B_{i}.
(3) Then the number of ways is $2^{s}-1$:

- breaking up a at any non-empty subset of these indices results in a valid separation
- breaking at any other index results in an invalid separation
(c) To find s quickly, can use a permutation-invariant hash function.

- Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.
(2) Let s be the number of indices $1 \leq i<n$ such that A_{i} is a permutation of B_{i}.
(3) Then the number of ways is $2^{s}-1$:

- breaking up a at any non-empty subset of these indices results in a valid separation
- breaking at any other index results in an invalid separation
(c) To find s quickly, can use a permutation-invariant hash function.
- Assign a random hash value $h(x)$ to each array value x.

- Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.
(2) Let s be the number of indices $1 \leq i<n$ such that A_{i} is a permutation of B_{i}.
(3) Then the number of ways is $2^{s}-1$:

- breaking up a at any non-empty subset of these indices results in a valid separation
- breaking at any other index results in an invalid separation
(c) To find s quickly, can use a permutation-invariant hash function.
- Assign a random hash value $h(x)$ to each array value x.
- Define hash $h\left(A_{i}\right)$ of a prefix to be $\sum_{j=1}^{i} h\left(a_{j}\right)$.

- Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the non-circular case

(1) Let $A_{i}=a_{1}, \ldots, a_{i}$ be the prefix of first i values of a.
(2) Let s be the number of indices $1 \leq i<n$ such that A_{i} is a permutation of B_{i}.
(3) Then the number of ways is $2^{s}-1$:

- breaking up a at any non-empty subset of these indices results in a valid separation
- breaking at any other index results in an invalid separation
(9) To find s quickly, can use a permutation-invariant hash function.
- Assign a random hash value $h(x)$ to each array value x.
- Define hash $h\left(A_{i}\right)$ of a prefix to be $\sum_{j=1}^{i} h\left(a_{j}\right)$.
- If no hash collisions then A_{i} is a permutation of B_{i} if and only if $h\left(A_{i}\right)=h\left(B_{i}\right)$.

I - Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the circular case

(1) For each hash value z, let $s(z)$ be number of indices $0 \leq i<n$ such that $h\left(A_{i}\right)-h\left(B_{i}\right)=z$.

I - Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the circular case

(1) For each hash value z, let $s(z)$ be number of indices $0 \leq i<n$ such that $h\left(A_{i}\right)-h\left(B_{i}\right)=z$.
(2) Then (assuming no hash collisions), the number of ways is $\sum_{z} 2^{s(z)}-s(z)-1$.

I - Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the circular case

(1) For each hash value z, let $s(z)$ be number of indices $0 \leq i<n$ such that $h\left(A_{i}\right)-h\left(B_{i}\right)=z$.
(2) Then (assuming no hash collisions), the number of ways is $\sum_{z} 2^{s(z)}-s(z)-1$.

- For each z, taking any subset of at least 2 of the $s(z)$ indices is a valid separation.

- Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the circular case

(1) For each hash value z, let $s(z)$ be number of indices $0 \leq i<n$ such that $h\left(A_{i}\right)-h\left(B_{i}\right)=z$.
(2) Then (assuming no hash collisions), the number of ways is $\sum_{z} 2^{s(z)}-s(z)-1$.

- For each z, taking any subset of at least 2 of the $s(z)$ indices is a valid separation.
- Taking two indices with different values of $h\left(A_{i}\right)-h\left(B_{i}\right)$ gives an invalid separation.

- Intact Intervals

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the circular case

(1) For each hash value z, let $s(z)$ be number of indices $0 \leq i<n$ such that $h\left(A_{i}\right)-h\left(B_{i}\right)=z$.
(2) Then (assuming no hash collisions), the number of ways is $\sum_{z} 2^{s(z)}-s(z)-1$.

- For each z, taking any subset of at least 2 of the $s(z)$ indices is a valid separation.
- Taking two indices with different values of $h\left(A_{i}\right)-h\left(B_{i}\right)$ gives an invalid separation.
(3) Results in an $O(n)$ time solution, assuming $O(1)$-time dictionaries which can be used to store the frequency of each hash value.

Problem

Given circular array a, how many ways can it be separated into two or more intervals such that array b can be obtained by permuting each interval separately?

Solution for the circular case

(1) For each hash value z, let $s(z)$ be number of indices $0 \leq i<n$ such that $h\left(A_{i}\right)-h\left(B_{i}\right)=z$.
(2) Then (assuming no hash collisions), the number of ways is $\sum_{z} 2^{s(z)}-s(z)-1$.

- For each z, taking any subset of at least 2 of the $s(z)$ indices is a valid separation.
- Taking two indices with different values of $h\left(A_{i}\right)-h\left(B_{i}\right)$ gives an invalid separation.
(3) Results in an $O(n)$ time solution, assuming $O(1)$-time dictionaries which can be used to store the frequency of each hash value.

Statistics at 4-hour mark: 11 submissions, 5 accepted, first after 01:51

