J — Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments at constant speed.

Solution

J — Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments at constant speed.

Solution

(1) The answer is simply the max of the distance between the starting points and the distance between the ending points. Let us see why...

J — Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments at constant speed.

Solution

(1) The answer is simply the max of the distance between the starting points and the distance between the ending points. Let us see why...
(2) Useful trick: by viewing everything from the reference frame of the first runner, we can instead assume that the first person is stationary at $(0,0)$.

J - Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments at constant speed.

Solution

(1) The answer is simply the max of the distance between the starting points and the distance between the ending points. Let us see why...
(2) Useful trick: by viewing everything from the reference frame of the first runner, we can instead assume that the first person is stationary at $(0,0)$.
(3) Second person is at some position $(x(t), y(t))=\left(x_{0}+t \cdot x_{\delta}, y_{0}+t \cdot y_{\delta}\right)$ at time t.

J - Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments at constant speed.

Solution

(1) The answer is simply the max of the distance between the starting points and the distance between the ending points. Let us see why...
(2) Useful trick: by viewing everything from the reference frame of the first runner, we can instead assume that the first person is stationary at $(0,0)$.
(3) Second person is at some position $(x(t), y(t))=\left(x_{0}+t \cdot x_{\delta}, y_{0}+t \cdot y_{\delta}\right)$ at time t.
(1) Squared distance at time t is then $x(t)^{2}+y(t)^{2}=\left(x_{0}+t \cdot x_{\delta}\right)^{2}+\left(y_{0}+t \cdot y_{\delta}\right)^{2}$

J - Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments at constant speed.

Solution

(1) The answer is simply the max of the distance between the starting points and the distance between the ending points. Let us see why...
(2) Useful trick: by viewing everything from the reference frame of the first runner, we can instead assume that the first person is stationary at $(0,0)$.
(3) Second person is at some position $(x(t), y(t))=\left(x_{0}+t \cdot x_{\delta}, y_{0}+t \cdot y_{\delta}\right)$ at time t.
(1) Squared distance at time t is then $x(t)^{2}+y(t)^{2}=\left(x_{0}+t \cdot x_{\delta}\right)^{2}+\left(y_{0}+t \cdot y_{\delta}\right)^{2}$
(5) This is a convex quadratic function in t, so it is maximized at $t=t_{\text {min }}$ or $t=t_{\text {max }}$.

J - Joint Jog Jam

Problem

Compute the maximum distance between two people moving in straight line segments at constant speed.

Solution

(1) The answer is simply the max of the distance between the starting points and the distance between the ending points. Let us see why...
(2) Useful trick: by viewing everything from the reference frame of the first runner, we can instead assume that the first person is stationary at $(0,0)$.
(3) Second person is at some position $(x(t), y(t))=\left(x_{0}+t \cdot x_{\delta}, y_{0}+t \cdot y_{\delta}\right)$ at time t.
(1) Squared distance at time t is then $x(t)^{2}+y(t)^{2}=\left(x_{0}+t \cdot x_{\delta}\right)^{2}+\left(y_{0}+t \cdot y_{\delta}\right)^{2}$
(5) This is a convex quadratic function in t, so it is maximized at $t=t_{\text {min }}$ or $t=t_{\text {max }}$.

Statistics at 4-hour mark: 274 submissions, 189 accepted, first after 00:10

