Problem

You are given a list of numbers and then another list of the same numbers, except one number has been removed. What number was removed?

Problem

You are given a list of numbers and then another list of the same numbers, except one number has been removed. What number was removed?

Solution

This problem can be solved in many ways, the list is small so there is no need for any special data structure or algorithm.

Problem

You are given a list of numbers and then another list of the same numbers, except one number has been removed. What number was removed?

- This problem can be solved in many ways, the list is small so there is no need for any special data structure or algorithm.
- But for this problem, the most efficient solution is also the simplest:

Problem

You are given a list of numbers and then another list of the same numbers, except one number has been removed. What number was removed?

- This problem can be solved in many ways, the list is small so there is no need for any special data structure or algorithm.
- But for this problem, the most efficient solution is also the simplest:
- **3** Let the first list of numbers be $x_1, x_2, \ldots x_n$ and the second list be $y_1, y_2, \ldots y_{n-1}$.

Problem

You are given a list of numbers and then another list of the same numbers, except one number has been removed. What number was removed?

- This problem can be solved in many ways, the list is small so there is no need for any special data structure or algorithm.
- But for this problem, the most efficient solution is also the simplest:
- **3** Let the first list of numbers be $x_1, x_2, \ldots x_n$ and the second list be $y_1, y_2, \ldots y_{n-1}$.
- The answer is then

$$\sum_{k=1}^{n} x_k - \sum_{k=1}^{n-1} y_k.$$

Problem

You are given a list of numbers and then another list of the same numbers, except one number has been removed. What number was removed?

Solution

- This problem can be solved in many ways, the list is small so there is no need for any special data structure or algorithm.
- But for this problem, the most efficient solution is also the simplest:
- **3** Let the first list of numbers be $x_1, x_2, \ldots x_n$ and the second list be $y_1, y_2, \ldots y_{n-1}$.
- The answer is then

$$\sum_{k=1}^{n} x_k - \sum_{k=1}^{n-1} y_k.$$

Statistics at 4-hour mark: 248 submissions, 196 accepted, first after 00:01