Problem

Find a path of length x subject to certain constraints in a $2 \times m$ grid so that the sum of the values in the cells of the path is maximized.

Problem

Find a path of length x subject to certain constraints in a $2 \times m$ grid so that the sum of the values in the cells of the path is maximized.

Formalized version of problem

Find integers $0 \le a \le b \le c \le d \le m$ such that 2(b-a) + (c-b) + 2(d-c) = x.

Problem

Find a path of length x subject to certain constraints in a $2 \times m$ grid so that the sum of the values in the cells of the path is maximized.

Formalized version of problem

Find integers $0 \le a \le b \le c \le d \le m$ such that 2(b-a) + (c-b) + 2(d-c) = x.

Maximize $\begin{cases} \text{sum of cells of one row in range } [a, d) \\ \text{plus} \\ \text{sum of cells of other row in ranges } [a, b) \text{ and } [c, d) \end{cases}$

Solution outline

• *m* is very large, cannot loop over all cells

Author: Jimmy Mårdell NCPC 2021 solutions

Solution outline

- *m* is very large, cannot loop over all cells
- 2 Large parts of grid look the same because only n segments

Solution outline

- *m* is very large, cannot loop over all cells
- 2 Large parts of grid look the same because only n segments
- Separately handle three main cases: 0, 1 or 2 U-turns

Solution outline

- *m* is very large, cannot loop over all cells
- 2 Large parts of grid look the same because only *n* segments
- Separately handle three main cases: 0, 1 or 2 U-turns
- We focus here only on the hardest case with 2 U-turns.

Insight 1

We can assume solution has the gap in the lower half

• Run solution again on flipped input to cover opposite case

- We can assume solution has the gap in the lower half
 - Run solution again on flipped input to cover opposite case
- There is an optimal solution where a or d is at a segment endpoint (or 0 or m). Otherwise we could decrease (or increase) both a and d with 1 until either

- We can assume solution has the gap in the lower half
 - Run solution again on flipped input to cover opposite case
- There is an optimal solution where a or d is at a segment endpoint (or 0 or m). Otherwise we could decrease (or increase) both a and d with 1 until either
 - a or d reaches a segment endpoint, or

- We can assume solution has the gap in the lower half
 - Run solution again on flipped input to cover opposite case
- There is an optimal solution where a or d is at a segment endpoint (or 0 or m). Otherwise we could decrease (or increase) both a and d with 1 until either
 - a or d reaches a segment endpoint, or
 - d = c or a = b, in which case we end up with the 1 U-turn case (handled separately, left as an exercise!)

- We can assume solution has the gap in the lower half
 - Run solution again on flipped input to cover opposite case
- There is an optimal solution where a or d is at a segment endpoint (or 0 or m). Otherwise we could decrease (or increase) both a and d with 1 until either
 - a or d reaches a segment endpoint, or
 - d = c or a = b, in which case we end up with the 1 U-turn case (handled separately, left as an exercise!)
- 3 We can assume *a* is the endpoint
 - Run solution again on reversed input to cover opposite case.

Insight 2

• There is an optimal solution where b or c is at a segment endpoint, for the same reasoning as before (except that this time we would show it by shifting b or c).

Author: Jimmy Mårdell NCPC 2021 solutions

- There is an optimal solution where b or c is at a segment endpoint, for the same reasoning as before (except that this time we would show it by shifting b or c).
- 2 We end up with two cases to consider:
 - a and b are segment endpoints
 - a and c are segment endpoints

- There is an optimal solution where b or c is at a segment endpoint, for the same reasoning as before (except that this time we would show it by shifting b or c).
- 2 We end up with two cases to consider:
 - a and b are segment endpoints
 - a and c are segment endpoints
- Will focus on the first of these; the other must also be solved, but is done in a very similar fashion.

Sliding

• Fix some a and b. $(O(n^2)$ possible choices.)

Author: Jimmy Mårdell NCPC 2021 solutions

Sliding

• Fix some a and b. $(O(n^2)$ possible choices.)

2 Set
$$c = b$$
 (or $c = b + 1$ if x is odd) and $d = a + \lceil x/2 \rceil$

- Fix some a and b. $(O(n^2)$ possible choices.)
- 2 Set c = b (or c = b + 1 if x is odd) and $d = a + \lceil x/2 \rceil$
- \odot Idea: slide c and d right (c twice as fast as d) and maintain current score.

- Fix some a and b. $(O(n^2)$ possible choices.)
- 3 Set c = b (or c = b + 1 if x is odd) and $d = a + \lceil x/2 \rceil$
- 3 Idea: slide c and d right (c twice as fast as d) and maintain current score.
 - Since grid values rarely change value, we can slide many steps at a time.

- Fix some a and b. $(O(n^2)$ possible choices.)
- 3 Set c = b (or c = b + 1 if x is odd) and $d = a + \lceil x/2 \rceil$
- \bigcirc Idea: slide c and d right (c twice as fast as d) and maintain current score.
 - Since grid values rarely change value, we can slide many steps at a time.
 - Calculate when either c or d hits next segment endpoint and jump directly there.

- Fix some a and b. $(O(n^2)$ possible choices.)
- 3 Set c = b (or c = b + 1 if x is odd) and $d = a + \lceil x/2 \rceil$
- \bigcirc Idea: slide c and d right (c twice as fast as d) and maintain current score.
 - Since grid values rarely change value, we can slide many steps at a time.
 - Calculate when either c or d hits next segment endpoint and jump directly there.
 - Repeat until c reached the end of the road.

- Fix some a and b. $(O(n^2)$ possible choices.)
- 3 Set c = b (or c = b + 1 if x is odd) and $d = a + \lceil x/2 \rceil$
- **3** Idea: slide c and d right (c twice as fast as d) and maintain current score.
 - Since grid values rarely change value, we can slide many steps at a time.
 - Calculate when either c or d hits next segment endpoint and jump directly there.
 - Repeat until c reached the end of the road.
- "Next segment endpoint" can be found in O(1), for a total complexity of $O(n^3)$.

- Fix some a and b. $(O(n^2)$ possible choices.)
- 3 Set c = b (or c = b + 1 if x is odd) and $d = a + \lceil x/2 \rceil$
- **3** Idea: slide c and d right (c twice as fast as d) and maintain current score.
 - Since grid values rarely change value, we can slide many steps at a time.
 - Calculate when either c or d hits next segment endpoint and jump directly there.
 - Repeat until c reached the end of the road.
- "Next segment endpoint" can be found in O(1), for a total complexity of $O(n^3)$.
 - An optimized $O(n^4)$ implementation might also pass.

Sliding

- Fix some a and b. $(O(n^2)$ possible choices.)
- 3 Set c = b (or c = b + 1 if x is odd) and $d = a + \lceil x/2 \rceil$

3 Idea: slide c and d right (c twice as fast as d) and maintain current score.

- Since grid values rarely change value, we can slide many steps at a time.
- Calculate when either c or d hits next segment endpoint and jump directly there.
- Repeat until c reached the end of the road.
- "Next segment endpoint" can be found in O(1), for a total complexity of $O(n^3)$.

• An optimized $O(n^4)$ implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

