M - Marvelous Marathon

Problem

Find a path of length x subject to certain constraints in a $2 \times m$ grid so that the sum of the values in the cells of the path is maximized.

M - Marvelous Marathon

Problem

Find a path of length x subject to certain constraints in a $2 \times m$ grid so that the sum of the values in the cells of the path is maximized.

Formalized version of problem

Find integers $0 \leq a \leq b \leq c \leq d \leq m$ such that $2(b-a)+(c-b)+2(d-c)=x$.

M - Marvelous Marathon

Problem

Find a path of length x subject to certain constraints in a $2 \times m$ grid so that the sum of the values in the cells of the path is maximized.

Formalized version of problem

Find integers $0 \leq a \leq b \leq c \leq d \leq m$ such that $2(b-a)+(c-b)+2(d-c)=x$.
Maximize $\left\{\begin{array}{c}\text { sum of cells of one row in range }[a, d) \\ \text { plus } \\ \text { sum of cells of other row in ranges }[a, b) \text { and }[c, d)\end{array}\right\}$

M - Marvelous Marathon

Solution outline

(1) m is very large, cannot loop over all cells

M - Marvelous Marathon

Solution outline

(1) m is very large, cannot loop over all cells
(2) Large parts of grid look the same because only n segments

M - Marvelous Marathon

Solution outline

(1) m is very large, cannot loop over all cells
(2) Large parts of grid look the same because only n segments
(3) Separately handle three main cases: 0,1 or 2 U-turns

M - Marvelous Marathon

Solution outline

(1) m is very large, cannot loop over all cells
(2) Large parts of grid look the same because only n segments
(3) Separately handle three main cases: 0,1 or 2 U-turns
(1) We focus here only on the hardest case with 2 U-turns.

M - Marvelous Marathon

Insight 1

(1) We can assume solution has the gap in the lower half

- Run solution again on flipped input to cover opposite case

M - Marvelous Marathon

Insight 1

(1) We can assume solution has the gap in the lower half

- Run solution again on flipped input to cover opposite case
(2) There is an optimal solution where a or d is at a segment endpoint (or 0 or m). Otherwise we could decrease (or increase) both a and d with 1 until either

M - Marvelous Marathon

Insight 1

(1) We can assume solution has the gap in the lower half

- Run solution again on flipped input to cover opposite case
(2) There is an optimal solution where a or d is at a segment endpoint (or 0 or m). Otherwise we could decrease (or increase) both a and d with 1 until either
- a or d reaches a segment endpoint, or

M - Marvelous Marathon

Insight 1

(1) We can assume solution has the gap in the lower half

- Run solution again on flipped input to cover opposite case
(2) There is an optimal solution where a or d is at a segment endpoint (or 0 or m). Otherwise we could decrease (or increase) both a and d with 1 until either
- a or d reaches a segment endpoint, or
- $d=c$ or $a=b$, in which case we end up with the 1 U-turn case (handled separately, left as an exercise!)

M - Marvelous Marathon

Insight 1

(1) We can assume solution has the gap in the lower half

- Run solution again on flipped input to cover opposite case
(2) There is an optimal solution where a or d is at a segment endpoint (or 0 or m). Otherwise we could decrease (or increase) both a and d with 1 until either
- a or d reaches a segment endpoint, or
- $d=c$ or $a=b$, in which case we end up with the 1 U-turn case (handled separately, left as an exercise!)
(3) We can assume a is the endpoint
- Run solution again on reversed input to cover opposite case.

M - Marvelous Marathon

Insight 2

(1) There is an optimal solution where b or c is at a segment endpoint, for the same reasoning as before (except that this time we would show it by shifting b or c).

M - Marvelous Marathon

Insight 2

(1) There is an optimal solution where b or c is at a segment endpoint, for the same reasoning as before (except that this time we would show it by shifting b or c).
(2) We end up with two cases to consider:

- a and b are segment endpoints
- a and c are segment endpoints

M - Marvelous Marathon

Insight 2

(1) There is an optimal solution where b or c is at a segment endpoint, for the same reasoning as before (except that this time we would show it by shifting b or c).
(2) We end up with two cases to consider:

- a and b are segment endpoints
- a and c are segment endpoints
(3) Will focus on the first of these; the other must also be solved, but is done in a very similar fashion.

M - Marvelous Marathon

Sliding

(0) Fix some a and b. ($O\left(n^{2}\right)$ possible choices.)

M - Marvelous Marathon

Sliding

(1) Fix some a and b. ($O\left(n^{2}\right)$ possible choices.)
(2) Set $c=b$ (or $c=b+1$ if x is odd) and $d=a+\lceil x / 2\rceil$

M - Marvelous Marathon

Sliding

(1) Fix some a and b. ($O\left(n^{2}\right)$ possible choices.)
(2) Set $c=b$ (or $c=b+1$ if x is odd) and $d=a+\lceil x / 2\rceil$

- Idea: slide c and d right (c twice as fast as d) and maintain current score.

M - Marvelous Marathon

Sliding

(1) Fix some a and b. ($O\left(n^{2}\right)$ possible choices.)
(2) Set $c=b$ (or $c=b+1$ if x is odd) and $d=a+\lceil x / 2\rceil$
(3) Idea: slide c and d right (c twice as fast as d) and maintain current score.

- Since grid values rarely change value, we can slide many steps at a time.

M - Marvelous Marathon

Sliding

(1) Fix some a and b. ($O\left(n^{2}\right)$ possible choices.)
(2) Set $c=b$ (or $c=b+1$ if x is odd) and $d=a+\lceil x / 2\rceil$
(3) Idea: slide c and d right (c twice as fast as d) and maintain current score.

- Since grid values rarely change value, we can slide many steps at a time.
- Calculate when either c or d hits next segment endpoint and jump directly there.

M - Marvelous Marathon

Sliding

(1) Fix some a and b. ($O\left(n^{2}\right)$ possible choices.)
(2) Set $c=b$ (or $c=b+1$ if x is odd) and $d=a+\lceil x / 2\rceil$
(3) Idea: slide c and d right (c twice as fast as d) and maintain current score.

- Since grid values rarely change value, we can slide many steps at a time.
- Calculate when either c or d hits next segment endpoint and jump directly there.
- Repeat until c reached the end of the road.

M - Marvelous Marathon

Sliding

(1) Fix some a and b. ($O\left(n^{2}\right)$ possible choices.)
(2) Set $c=b$ (or $c=b+1$ if x is odd) and $d=a+\lceil x / 2\rceil$
(3) Idea: slide c and d right (c twice as fast as d) and maintain current score.

- Since grid values rarely change value, we can slide many steps at a time.
- Calculate when either c or d hits next segment endpoint and jump directly there.
- Repeat until c reached the end of the road.
(1) "Next segment endpoint" can be found in $O(1)$, for a total complexity of $O\left(n^{3}\right)$.

M - Marvelous Marathon

Sliding

(1) Fix some a and b. ($O\left(n^{2}\right)$ possible choices.)
(2) Set $c=b$ (or $c=b+1$ if x is odd) and $d=a+\lceil x / 2\rceil$
(3) Idea: slide c and d right (c twice as fast as d) and maintain current score.

- Since grid values rarely change value, we can slide many steps at a time.
- Calculate when either c or d hits next segment endpoint and jump directly there.
- Repeat until c reached the end of the road.
(9) "Next segment endpoint" can be found in $O(1)$, for a total complexity of $O\left(n^{3}\right)$.
- An optimized $O\left(n^{4}\right)$ implementation might also pass.

M - Marvelous Marathon

Sliding

(1) Fix some a and b. $\left(O\left(n^{2}\right)\right.$ possible choices.)
(2) Set $c=b$ (or $c=b+1$ if x is odd) and $d=a+\lceil x / 2\rceil$
(3) Idea: slide c and d right (c twice as fast as d) and maintain current score.

- Since grid values rarely change value, we can slide many steps at a time.
- Calculate when either c or d hits next segment endpoint and jump directly there.
- Repeat until c reached the end of the road.
(1) "Next segment endpoint" can be found in $O(1)$, for a total complexity of $O\left(n^{3}\right)$.
- An optimized $O\left(n^{4}\right)$ implementation might also pass.

Statistics at 4-hour mark: 0 submissions, 0 accepted

9		9	9			4	${ }_{4} \rightarrow 4$						$\rightarrow 6 \rightarrow 6$	6					
													-75-7		5			8	8

