
41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

Problem Tutorial: “Crab’s Cannon”
This problem has short and beautiful solution. I have discovered a truly marvelous explanation of this, which this
document is too small to contain.

That was a joke, so let’s start the problem analysis. First, we will solve a simpler problem: we are given a set of
integers, and we need to tell if there exists a string with its PPS equal to the given set. After solving this simpler
problem, we use the observations from there to solve the harder version. I will try to provide a complete proof,
so the analysis will be quite long. It’s also possible that the solution can be proved in a shorter way, but I didn’t
think of it.

Solving a simpler problem

Convention

• 𝑠′ denotes reversed 𝑠. So, if 𝑠 = “crab”, then 𝑠′ = “barc”

• 𝑎+ 𝑏 denotes concatenation of strings 𝑎 and 𝑏

• Palindromic prefix of length 𝑥 is called just “prefix 𝑥”. It also means that 𝑥 is in the PPS.

For simplification, we assume that 0 is present in the PPS. So, we add 0 to the given set. Also, we sort the set
beforehands.

We need to define some criteria which are necessary and sufficient to determine if the set can be PPS of some
string.

First of all, 1 must be present in the set (string of length 1 is always a palindrome), otherwise the answer is “NO”.

Then consider two numbers from the set, 𝑎 and 𝑏 (𝑎 < 𝑏). What information we can obtain from this fact?

It’s easy to see that, since 𝑞 + 𝑝 is a palindrome, 𝑞 + 𝑝 ends with 𝑞′. But, since 𝑞′ is also a palindrome, 𝑞′ = 𝑞:

Then consider the string 𝑟. It’s the prefix of 𝑞 and it the same time it’s the suffix of 𝑞, thus 𝑟′ is the prefix of
𝑞′ = 𝑞. So, we get 𝑟′ = 𝑟. 𝑟 has length 𝑎− (𝑏− 𝑎) = 2𝑎− 𝑏. So, we get the palindrome prefix of length 2𝑎− 𝑏.

What if 2𝑎− 𝑏 < 0? This is also a valid case, because the string grows more than twice:

𝑠 can be any palindromic string.

So, the first condition (denote it 𝐶1) is as follows: if 𝑎 and 𝑏 are in the set, then 2𝑎 − 𝑏 is also in the set, or
2𝑎− 𝑏 < 0.

Now we can try the following algorithm: for each 𝑎 and 𝑏 in the set (𝑎 < 𝑏), check whether 2𝑎− 𝑏 is negative or is
present in the set.

Page 3 of 21

41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

It can be shown that it’s enough to check only the pairs 𝑎 and 𝑏 that are neighbors in the set. So, sort the set and
for each 𝑖 (2 ≤ 𝑖 ≤ 𝑛), check if 2𝑣𝑖 − 𝑣𝑖−1 is in the set or it’s negative.

The idea above also gives us a way to construct such a string in 𝑂(ℓ) time. Iterate over the set. Suppose we had
prefix 𝑣𝑖−1 and now we consider prefix 𝑣𝑖:

Look at the picture above. The prefix 𝑣𝑖 ends with 𝑝. It’s a palindrome, thus the string starts with 𝑝′. But since
the prefix 𝑣𝑖−1 is also a palindrome, the string ends with 𝑝. So, we copy the suffix of length 𝑣𝑖 − 𝑣𝑖−1 to the end
of the string.

If 2𝑣𝑖 − 𝑣𝑖−1 is negative, we don’t have the suffix of length 𝑣𝑖 − 𝑣𝑖−1:

So, we copy 𝑝 to the end of the new string and fill 𝑠 with unused characters. One can easily show that such situation
happens no more than ⌈log2 ℓ⌉+ 1 times, so we can use the alphabet of size no more than ⌈log2 ℓ⌉+ 1.

But 𝐶1 is not sufficient. Consider the set {1, 2, 4}. 𝐶1 is still held, but the required string doesn’t exist (constructing
the string gives “aaaa”, which has 3 in its PPS). What are we missing?

Using the constructive method above, we can just build the string and check if the given set and the PPS of the
constructed string match. But it’s 𝑂(ℓ + 𝑛), which doesn’t pass if ℓ = 1018. So, it’s a better idea to search for
more conditions.

We can notice that while moving from prefix 𝑣𝑖−1 to prefix 𝑣𝑖, we can skip some palindromic prefixes. It happens,
for example, when we copy the string 𝑝 in the constructive method, but this string is periodic. In this case, if we
add only the period, we still get a valid palindromic prefix. So, we need to cut out such cases.

More formally, the following theorem is true:

Theorem 1. If we have prefixes 𝑎, 𝑏, 𝑐 (𝑎 < 𝑏 < 𝑐) such that 𝑐 − 𝑏 ̸= 𝑏 − 𝑎, 2𝑏 − 𝑐 ≥ 0 and 𝑐 − 𝑏 is divisible by
𝑏− 𝑎, we have a prefix 𝑏+ (𝑏− 𝑎) = 2𝑏− 𝑎 between 𝑏 and 𝑐.

Remark. The second condition is required, because if 2𝑏− 𝑐 < 0, some characters will be filled with the symbols
never met before, so we won’t get a periodic string.

Proof. Denote 𝑑 = 𝑏− 𝑎, 𝑒 = 𝑐− 𝑏. Since 𝑒 is divisible by 𝑑 there exists such 𝑘 that 𝑒 = 𝑘𝑑. Look at the picture
below:

Since prefixes 𝑎 and 𝑏 are palindromic, 𝑎 − 𝑑, 𝑎 − 2𝑑, . . . , 𝑎 − 𝑘𝑑 are also palindromic prefixes. Using the same
idea as in the contructive algorithm, it can be shown that 𝑝 is equal to 𝑟 repeated 𝑘 times:

Page 4 of 21

41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

It’s left to prove that 𝑠+ 𝑟 is a palindrome, so there is a prefix 𝑏+ 𝑑 = 𝑏+ (𝑏− 𝑎) = 2𝑏− 𝑎.

Apparently 𝑠 = 𝑟′ + 𝑡+ 𝑟 is a palindrome, so 𝑡 is also a palindrome. Also 𝑟′ + 𝑡 is a palindrome, so 𝑟′ + 𝑡 = 𝑡+ 𝑟.
We have

𝑠+ 𝑟 = 𝑟′ + (𝑡+ 𝑟) + 𝑟 = 𝑟′ + (𝑟′ + 𝑡) + 𝑟 = 𝑟′ + (𝑟′ + 𝑡+ 𝑟)′ = 𝑟′ + 𝑠′ = (𝑠+ 𝑟)′.

So, 𝑠+ 𝑟 is also a palindrome.

So, we proved that the condition in Theorem 1 (denote it 𝐶2) is necessary. 𝐶2 can be used to check that we didn’t
skip a prefix in our set. If we have two prefixes 𝑣𝑖 and 𝑣𝑖−1, we need to ensure that there’s no prefix 𝑘 such that
𝑣𝑖 − 𝑣𝑖−1 is divisible by 𝑣𝑖−1 − 𝑘, 2𝑣𝑖 − 𝑣𝑖−1 ≥ 0 and 𝑣𝑖 − 𝑣𝑖−1 ̸= 𝑣𝑖−1 − 𝑘. It will be proved later that 𝑘 = 𝑣𝑖−2 is
enough to check.

It appears that these conditions are sufficient and there are no other prefixes we missed in the set. Let’s prove it.

Proof. Proof by contradiction. Suppose we have 𝑎 = 𝑣𝑖−1, 𝑏 = 𝑣𝑖, the conditions above (𝐶1 and 𝐶2) are met,
and there’s a palindromic prefix 𝑏1 = 𝑎+ 𝑥 (0 < 𝑥 < 𝑏− 𝑎) between 𝑎 and 𝑏. If there multiple such 𝑥, we use the
minimal 𝑥 possible.

First, if 2𝑎− 𝑏 < 0, then using the constructive algorithm above, we build a string in which 𝑏− 2𝑎 positions in the
middle are filled with new characters, so there cannot be any palindromic prefixes between 𝑎 and 𝑏.

Now consider the case when 2𝑎− 𝑏 ≥ 0:

Using 𝐶1, we can see that 2𝑎− 𝑏 and 𝑎− 𝑥 are also palindromic prefixes:

As both 𝑠+ 𝑝+ 𝑝 and 𝑠+ 𝑟 (prefixes 𝑎− 𝑥 and 𝑏 respectively) are palindromes, 𝑠+ 𝑝+ 𝑝 ends with 𝑟. So, we get
𝑟 + 𝑡 = 𝑡 + 𝑟, or similarly, the string is equal to its cyclic shift. It means that the string 𝑝 is periodic. So, we get
the contradiction with 𝐶2.

So, 𝐶1 and 𝐶2 are necessary and sufficient. Now we can construct the algorithm in 𝑂(𝑛 · log 𝑛) time (or even in
𝑂(𝑛) time if you use a hash set) to check both conditions. Unlike the analysis, the code is very neat and short :)

bool isValidPalindomicPrefixSet(vector<int64_t> v) {

if (v[0] != 1) return false;

v.insert(begin(v), 0);

set<int64_t> s(begin(v), end(v));

for (size_t i = 2; i < v.size(); ++i) {

if (v[i] - v[i-1] == v[i-1] - v[i-2]) continue;

Page 5 of 21

41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

if (2 * v[i-1] - v[i] < 0) continue;

if (!s.count(2 * v[i-1] - v[i])) return false;

if ((v[i] - v[i-1]) % (v[i-1] - v[i-2]) == 0) return false;

}

return true;

}

Now the only thing we need to prove is that it’s enough to take only neighbors while checking 𝐶1 and 𝐶2.

To simplify the reasoning, consider the PPS in terms of segments. A segment here is the distance between two
neighboring prefixes. For example, if the string has palindromic prefixes of length {0, 1, 3, 7, 11} (do not forget
that we also consider prefix of length zero), then we can construct the segments of length {1, 2, 4, 4}. A group of
segments is a set consisting of one or more consecutive segments. The total length of the group of segments is the
total length of all the segments in the group. Each segment and group of segments have their starting and ending
prefixes, i. e. the numbers each prefix starts and ends with.

Later we will use the length of a segment or a group of segments. Length of the segment 𝑠 is denoted |𝑠|. Length
of the group 𝐺 is denoted |𝐺|.
It’s easy to notice that the lengths of the segments are non-decreasing, otherwise 𝐶1 isn’t held.

We can also explain 𝐶1 and 𝐶2 in terms of segments. 𝐶1 means that if we have a group of segments 𝐺 starting at
prefix 𝑝, then we also have a group of segments 𝐻 (|𝐻| = |𝐺|) ending at 𝑝, or 𝑝 < |𝐺|. And 𝐶2 means that for
each segment 𝑠 starting at 𝑝 and each group 𝐺 ending at 𝑝, one of the following conditions is held: |𝑠| = |𝐺|, or |𝑠|
is not divisible by |𝐺|, or 𝑝 < |𝑠|.
We also need to prove the following statement:

Theorem 2. Suppose we have the segment 𝑏 ending in 𝑝 and the segment 𝑐 starting in 𝑝, and |𝑏| < |𝑐| applies.
Then, |𝑏|+ |𝑐| > 𝑝.

Proof. Consider the neighboring pairs of segments 𝑏 and 𝑐 such that |𝑏| < |𝑐| from left to right and check if
|𝑏|+ |𝑐| > 𝑝 for all of them. For first such pair we obviously have |𝑏| = 1, so |𝑐| > 𝑝 must hold (otherwise we get a
contradiction with 𝐶2 because |𝑐| is always divisible by |𝑏| = 1). Otherwise, the situation is as follows:

Here, 𝑎, 𝑏1, . . . , 𝑏𝑘 and 𝑐 are segments, and 𝑠 is some prefix. Also we have |𝑏1| = · · · = |𝑏𝑘| and 𝑏𝑘 = 𝑏. Check if the
theorem is true for segment 𝑐. By considering all the smaller prefixes, it’s already proved that |𝑎| + |𝑏| > 𝑠 + |𝑎|.
Now we need to prove that |𝑏| + |𝑐| > 𝑠 + |𝑎| + 𝑘 · |𝑏|, so the entire theorem will be proved. It’s easy to see
that |𝑐| ≥ 𝑘 · |𝑏| + |𝑎| (otherwise either 𝐶1 isn’t held or |𝑐| is divisible by |𝑏| and 𝐶2 isn’t held). So, we have
|𝑏|+ |𝑐| ≥ |𝑏|+ 𝑘 · |𝑏|+ |𝑎| > 𝑘 · |𝑏|+ 𝑠+ |𝑎|.

Using the results above, we can prove another theorem:

Theorem 3. If we have two neighboring groups of segments 𝐺1 and 𝐺2 (𝐺2 is to the right of 𝐺1) such that
|𝐺1| = |𝐺2|, then 𝐺2 consists of segments of equal length.

Proof. Proof by contradiction. Suppose we have such neighboring groups 𝐺1 and 𝐺2 such that 𝐺2 contains at
least two segments (𝑙2 and 𝑙1) of different lengths. It’s easy to notice that we can pick 𝑙2 and 𝑙1 in such a way that
they are neighbors:

It’s safe to assume that |𝑙1| > |𝑙2|. Also, both 𝑙1 and 𝑙2 are in 𝐺2, and |𝐺1| = |𝐺2|, so 𝑝 ≥ |𝑙2|+ |𝑙1|. Contradiction
with Theorem 2.

Finally, we show that taking neighbors while checking 𝐶1 and 𝐶2 is sufficient.

Page 6 of 21

41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

First, prove it for 𝐶1 by contradiction. Then there’s a group of segments 𝐺 starting at 𝑝, which violates 𝐶1 and
consists of more than one segment. If there are two segments of different lengths, then |𝐺| > 𝑝 by Theorem 2, so
𝐶1 is held. Now suppose 𝐺 consists of 𝑘 segments of the same length 𝑙. In this case we need to check for the prefix
𝑝− 𝑘𝑙. But we can achieve this only using one segment of length 𝑙. So, we don’t miss anything.

To show that checking only neighbors is valid for 𝐶2, we use Theorem 3. Consider adding a segment 𝑠 with starting
point 𝑝. If |𝑠| > 𝑝, then 𝐶2 is held. Otherwise there is a group 𝐺 ending in 𝑝 such that 𝑘 · |𝐺| = |𝑠| and 𝑘 > 1 (if
𝑘 = 1 or |𝑠| is not divisible by |𝐺|, 𝐶2 is held either). But as 𝑘 · |𝐺| = |𝑠| ≤ 𝑝, we can show using 𝐶1 that there
is a group 𝐻 right before 𝐺 such that |𝐺| = |𝐻|. Now Theorem 3 shows that 𝐺 consists of segments of the same
length 𝑙. But in this case checking only the segment of length 𝑙 ending in 𝑝 is OK.

Good, we finally dealt with the simpler version. So, let’s move on and solve the harder one.

Solving the harder version

In the harder version, we need to add minimum amount of numbers in the set in such a way that it becomes a PPS
or some string. When we know the solution for the simpler version, it’s easy to construct a naive solution for the
harder one:

• If 1 is not in set, then add it.

• Check if 𝐶1 holds, i. e. for each neighboring prefixes 𝑎 and 𝑏 (𝑎 < 𝑏) either 2𝑎 − 𝑏 < 0 must hold or 2𝑎 − 𝑏
must be present in the set. If not, add 2𝑎− 𝑏 to the set.

• Check if 𝐶2 holds, i. e. for segment 𝑠 starting at prefix 𝑝 that has previous segment 𝑡, if |𝑠| is divisible by |𝑡|
and |𝑠| ≤ 𝑝, then the segment 𝑠 must be split with a new prefix into smaller segments that have length |𝑡|.

Unfortunately, such solution works in Θ(ℓ) time in the worst case (i. e. not better than in linear time), so we need
something better.

First, forget about the prefixes itself. Now we consider only segments. And, what’s more, we compress the
information about the segments, keeping pairs of the form (𝑙, 𝑐) instead of original segments, where 𝑙 is the length
of one segment, and 𝑐 is the amount of segments of such length coming sequentially. For example, the set of
prefixes {0, 1, 3, 7, 11, 15} will be transformed to the sequence of segments {1, 2, 4, 4, 4} and then transformed to
the sequence of pairs {(1, 1), (2, 1), (4, 3)}.
Call the segment 𝑠 starting at prefix 𝑝 large if |𝑠| > 𝑝. (By the way, 𝑝 is the sum of previous segments’ lengths.)

Now, let’s take a different look at 𝐶1 and 𝐶2. 𝐶1 says that a segment 𝑠 must be either large, or |𝑠| must be equal to
the sum of lengths of sequential segments coming right before 𝑠. Similarly, 𝐶2 says that a segment 𝑠 with previous
segment 𝑡 must be either large, or |𝑠| = |𝑡| holds, or |𝑠| is not divisible by |𝑡|.
Recall that the segments’ lengths are non-decreasing, otherwise a 𝐶1 doesn’t hold. Another useful observation
comes from Theorem 3 : if the segment 𝑠 starting from prefix 𝑝 is longer than the previous one, 𝑡, then 𝑠 ≥ 𝑝

2 . So,
adding a new segment with different length increases the total length at least by half, which means that the number
of pairs in compressed representation is 𝑂(log ℓ), which is much smaller than the original sequence of segments.

Before going further, we prove the following theorem:

Theorem 4. Consider a segment 𝑠, which is not large. This segment is split into two smaller segments, 𝑥 and
𝑦 (|𝑥| + |𝑦| = |𝑠|). If the split these segments to the segments of equal length 𝑔 = gcd(|𝑥|, |𝑦|), the answer to the
problem won’t change.

Proof. If 𝑠 is not large, then there exists a group of segments 𝐺 such that |𝐺| = |𝑠|. For the sake of clarity, we
merge the group 𝐺 into one segment and use the last |𝑦| (|𝑦| ≤ |𝐺|) positions of it as a scratch space:

Now we need to prove the possibility of such replacement if we have |𝑦| positions of scratch space before 𝑥. We do
it by induction on |𝑥| and |𝑦|.

Page 7 of 21

41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

If |𝑦| is divisible by |𝑥|, then we use 𝐶2 to split |𝑦| to the segments of size |𝑥| = 𝑔. If |𝑥| is divisible by |𝑦|, then
then we apply 𝐶1 to segments of length 𝑦 sequentially, splitting 𝑥 by segments of size |𝑦| = 𝑔. In both cases, the
theorem is proved.

Now consider the case where 𝑦 is not divisible by 𝑥. Then, we apply 𝐶1 to segments of length 𝑦 sequentially, cutting
the segments of size |𝑦| from 𝑥. The length of the remaining segment 𝑦′ is equal to 𝑥 modulo 𝑦. Then, we apply
𝐶1 once more, getting the segment 𝑥′ (see the figure below):

We used |𝑥′| positions of scratch space, so 𝑦 − |𝑥′| = 𝑦 − (𝑦 − |𝑦′|) = |𝑦′| positions remain. So we perform an
induction step and split 𝑥′ and 𝑦′ into segments of size 𝑔′ = gcd(|𝑥′|, |𝑦′|). By Euclid’s theorem, 𝑔′ = 𝑔. Then, as
|𝑦| is divisible by |𝑔′|, we apply 𝐶2 to all the upcoming segments of length |𝑦| and split them into the segments of
length |𝑔′|. The theorem is proved.

What basically happened in the proof is that we used Euclid’s algorithm to split the segments. Neat.

Now, we come up with an optimal algorithm. We maintain the sequence of pairs (𝑙, 𝑐) for all the added prefixes.
We add the prefixes from the input one by one, in sorted order. Do not forget to add 1 to the input set beforehands
if it’s not already present.

When we add a new prefix, we push a new segment 𝑠 and try to apply 𝐶1 and 𝐶2 until we get a valid PPS. So, we
have 𝑂(log ℓ) pairs after each addition.

To perform addition fast, we do it in the following way:

1. If 𝑠 is a large segment, we can just add it.

2. Suppose 𝑡 is a segment previous to 𝑠. If |𝑠| is divisible by |𝑡|, then we split 𝑠 into the segments of size |𝑡|, add
them and finish the addition.

3. Let |𝑡| > |𝑠|. Then, we try to apply 𝐶1 to 𝑠 once. If no new segments are added (i. e. |𝑠| is equals to the
size of some neighboring group 𝐺), then we just add it and return. Otherwise, some segment is split. We
termorarily pop all the segments after the split, applying them later. Now consider the segment being split:

• If this segment is large, we just try to add the two subsegments recursively.

• Otherwise, we use the result from Theorem 4 and split those two segments 𝑥 and 𝑦 into smaller segments
of size 𝑔 = gcd(|𝑥|, |𝑦|).

When returning the popped segments back, we use the same algorithm recursively. But it won’t take long,
as the algorithm either just adds a segment, or splits it to equal subsegments on step 2), so it’s 𝑂(1) for each
readded segment.

4. Otherwise, |𝑡| < |𝑠|. We apply 𝐶1 many times as in the proof of Theorem 4, getting many segments of length
𝑠 and one segment 𝑡′ of length 𝑡 modulo 𝑠. Now, we have two cases:

• If 𝑡 was a large segment, we add the segment 𝑡′ and one of the segments of length |𝑠| recursively. Then,
we add the rest of the segments of length |𝑠| in 𝑂(1) time, as they are either added untouched, or all of
them pass through step 2) of the algorithm and are split on the subsegments of the equal size.

• Otherwise, we use the result from Theorem 4 and split all the segments into the subsegments of size
𝑔 = gcd(|𝑠|, |𝑡|).

It’s easy to see that this algorithm works. All we have to do now is to estimate its time complexity. Consider the
cases with two recursive calls. They only happen if we split a large segment. If at least one of the subsegments is
large, then the corresponding recursive calls stop at step 1), so such call is basically 𝑂(1). The recursive call which
is not stopped proceeds with a smaller number of pairs, so these cases have 𝑂(log ℓ) time complexity.

Page 8 of 21

41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

Otherwise, we split a large segment into two non-large segments. Such event destroys a large segment completely.
It’s not hard to observe that there are at most 𝑂(log ℓ) large segments created during all the additions, since each
large segment doubles the total length of the segments. Even if we obtain a large segment by splitting two large
segments, the original segment had quadrupled the total segment length when it was added. So, there will be no
more than 𝑂(log ℓ) such splits, and 𝑂(log ℓ) extra recursive branches, respectively.

The considerations above give time complexity 𝑂(log2 ℓ + 𝑛 log ℓ). Though, I don’t know how to generate a test
for which 𝑂(log2 ℓ) part runs much slower than 𝑂(𝑛 log ℓ) part.

So, finally, after all those pages of theorems and explanations, we obtain a fast and beautiful soltuion for this
problem :)

Page 9 of 21

