
41st Petrozavodsk Programming Camp, Summer 2021
Day 3: IQ test by kefaa2, antontrygubO o, and gepardo, Wednesday, August 25, 2021

Problem Tutorial: “Deleting”
Let’s consider(hopefully) slow solution first — 𝑑𝑝[𝑙][𝑟] is the smallest value for deleting numbers from 𝑙 to 𝑟. If
number 𝑙 was deleted in pair with number 𝑖 then we have two cases: 1. 𝑟 = 𝑖, in this case minimum value is
𝑚𝑎𝑥(𝑐𝑜𝑠𝑡[𝑙][𝑟], 𝑑𝑝[𝑙 + 1][𝑟 − 1]).

2. 𝑖 < 𝑟, then segments [𝑙, 𝑖], [𝑖+ 1, 𝑟] are independent and value is 𝑚𝑎𝑥(𝑑𝑝[𝑙][𝑖], 𝑑𝑝[𝑖+ 1][𝑟]).

So slow solution which works in 𝑂(𝑛3) is to compute this 𝑑𝑝 table, doing transitions in 𝑂(𝑛) time.

To speed it up, we will compute 𝑑𝑝 values in increasing order. Also, we will make forward transitions(so we will
try to do transitions from already computed values to uncomputed ones). Suppose that now we consider segment
[𝑙, 𝑟] and we are trying to make transitions from it. It’s easy to do transition of the first type — we can set
𝑑𝑝[𝑙 − 1][𝑟 + 1] to 𝑑𝑝[𝑙][𝑟] if 𝑐𝑜𝑠𝑡[𝑙 − 1][𝑟 + 1] < 𝑑𝑝[𝑙][𝑟] and 𝑑𝑝[𝑙 − 1][𝑟 + 1] is still not computed.

Transitions of the second type are harder. Let’s assume that segment 𝑙, 𝑟 is left one in transition. Then, we need
to find numbers 𝑘 > 𝑟 such that:

1. Value of 𝑑𝑝[𝑙][𝑘] is still not computed.

2. Value of 𝑑𝑝[𝑟 + 1][𝑘] is computed.

Then we are able to set 𝑑𝑝[𝑙][𝑘] to 𝑑𝑝[𝑙][𝑟].

To do this, we will use the best structure in the world — bitset. So, for each 𝑙 we will maintain bitset of already
computed values and uncomputed values. Then, finding 𝑘 is just operation of AND. After this we will iterate over
all 𝑘(for C++ users you can use Find first() and Find next(p) in std::bitset), and update the value of 𝑑𝑝 for them.

Note that we will update the value of 𝑑𝑝 for each segment at most once, so this operations take 𝑂(𝑛
3

64 ) in total.

There are some implementation notes:

1. Input is rather large, so using fast reading methods(for example, fread) can help a lot.

2. You can write solution without priority queue, because costs are small. Moreover, since they are disticnt, you
can iterate over 𝑑𝑝 values in increasing order and, if current value is equal to 𝑧, then the only place where new
value using first transition type can appear is 𝑙, 𝑟 such that 𝑑𝑝[𝑙][𝑟] = 𝑧. After that, you can do transitions of the
second type, starting from this segment, you can do them in query(simple one, not priority) like structure, since
all updated values will also have value of 𝑑𝑝 equal to z.

This optimizations are not needed to fit you solution in time(we have solution with priority queue and cin reading
method), but are certainly useful in case you solution is a little bit unoptimal.

Page 10 of 21


