

Problem Tutorial: "Fancy Formulas"

Firstly, note that the sum of the numbers stays the same modulo p. If this condition doesn't hold, just output -1.

Now, let $s = (a + b) \mod p$. Multiply all numbers a, b, c, d by s^{-1} , and the smallest number of operations clearly won't change. Note that from pair (a, 1 - a) we can go to one of $(2a \mod p, (1 - 2a) \mod p)$, and $((2a - 1) \mod p, 2(1 - a) \mod p)$. Now, we can reformulate our problem in the following way:

• You are given integer a. In one operation, you can change a to $2a \mod p$ or $2a - 1 \mod p$. Find the smallest number of operations needed to make a equal b.

This problem is easier to handle. Note that after the set of reachable numbers after k operations is the set of remainders modulo p of numbers from segment $[2^k a - (2^k - 1), 2^k a]$. For $k \ge 30$, the length of this segment will exceed p, so all remainders will be available. So, we just need to check k one by one, until we find the first one for which the segment $[2^k a - (2^k - 1), 2^k a]$ contains a number which equals to b modulo b. Asymptotics $O(\log p)$ per query.