Problem Tutorial: "Glory Graph"

There are 6 non-isomoprhic types of graphs on 4 vertices (here we put complete blue and complete yellow graphs into the same type). Here they are. Let's denote the numbers of times they appear as subgraphs of G as $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ correspondently.

We will now try to find some conditions on these numbers which would help us to dedude $Y-A=x_{6}-x_{2}$. From now on, we will do some double counting.

- There are $\frac{n(n-1)(n-2)(n-3)}{24}$ subgraphs of size 4 in total. So $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=\frac{n(n-1)(n-2)(n-3)}{24}=C_{1}$.
- Let's now double count the number of quadruples (A, B, C, D) of pairwise distinct vertices, where the edges $A B$ and $B C$ have different colors. From one side, it's equal to $0 \cdot x_{1}+8 \cdot x_{2}+12 \cdot x_{3}+12 \cdot x_{4}+16 \cdot x_{5}+16 \cdot x_{6}$. From other side, it's equal to $(n-3)$ by the sum of $2 b_{i} y_{i}$ over all i, where b_{i} and y_{i} are the numbers of blue and yellow edges incident to vertex i respectively, and this sum can be calculated in $O\left(n^{2}\right)$. So, we can find $2 x_{2}+3 x_{3}+3 x_{4}+4 x_{5}+4 x_{6}=C_{2}$ in $O\left(n^{2}\right)$.
- Let's now double count the number of quadruples (A, B, C, D) of pairwise distinct vertices, where edges $A B$, $B C, C D, D A, A C$ all have the same color. From one side, it's equal to $24 \cdot x_{1}+4 \cdot x_{2}+0 \cdot x_{3}+0 \cdot x_{4}+0 \cdot x_{5}+0 \cdot x_{6}$. From other side, it's equal to sum of $2 c n t_{i j}^{1}\left(c n t_{i j}^{1}-1\right)$ over all edges (i, j), where $c n t_{i j}^{1}$ is the number of vertices k such that edges $(i, k),(j, k),(i, j)$ have the same color. We can calculate all $c n t_{i j}^{1}$ in $O\left(\frac{n^{3}}{32}\right)$ with bitsets. So, we can find $6 x_{1}+x_{2}=C_{3}$ in $O\left(\frac{n^{3}}{32}\right)$.
- Let's now double count the number of quadruples (A, B, C, D) of pairwise distinct vertices, where edges $A B$, $B C, C D, D A$ all have the same color, which is different from the color of edge $A C$. From one side, it's equal to $0 \cdot x_{1}+4 \cdot x_{2}+0 \cdot x_{3}+0 \cdot x_{4}+8 \cdot x_{5}+0 \cdot x_{6}$. From other side, it's equal to sum of $2 c n t_{i j}^{2}\left(c n t_{i j}^{2}-1\right)$ over all edges (i, j), where $c n t_{i j}^{2}$ is the number of vertices k such that edges $(i, k),(j, k)$ have the same color different from the color of edge (i, j). We can calculate all $c n t_{i j}^{2}$ in $O\left(\frac{n^{3}}{32}\right)$ with bitsets. So, we can find $x_{2}+2 x_{5}=C_{4}$ in $O\left(\frac{n^{3}}{32}\right)$.

Now, we can write:

$$
-3 C_{1}+C_{2}+\frac{C_{3}}{2}-\frac{C_{4}}{2}=
$$

$$
\begin{aligned}
=-3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)+\left(2 x_{2}\right. & \left.+3 x_{3}+3 x_{4}+4 x_{5}+4 x_{6}\right)+\frac{6 x_{1}+x_{2}}{2}-\frac{x_{2}+2 x_{5}}{2}= \\
& =x_{6}-x_{2}
\end{aligned}
$$

Note. While this may seem like a black magic, obtaining of this equation isn't that random: just write all the formulas you can with $x_{1}, x_{2}, \ldots, x_{6}$, and combine them to get $x_{6}-x_{2}$, as the problem asks for that.

