Circle of Friends Problem Statement

Problem Statement

Given a circular array of N positive integers, count the number of ways to
partition the circular array into subarrays where the values in each subarray
bitwise AND to a nonzero value. N < 2-10% 0 < a; < 2.

NADC 2020: Circle of Friends Solution April 22nd, 2021 1/5



Solving a Simpler Problem

Problems on circular arrays tend to be fairly similar to the equivalent
versions on regular arrays, so we'll start by solving the following simpler
problem instead:

Problem Statement

Given an array of N positive integers, count the number of ways to partition
the array into subarrays where the values in each subarray bitwise AND to
a nonzero value. N < 2-10% 0 < a; < 290,

NADC 2020: Circle of Friends Solution April 22nd, 2021 2/5




A Dynamic Programming Approach

Let's define g(i, /) to be 1 if the bitwise AND of a;, ..., aj is nonzero, and
zero otherwise.

Furthermore, let's define f(i) to be the number of ways to partition the
first i integers such that the bitwise AND condition is satisfied, so the
answer to the problem is f(N).

We can therefore set up a dynamic programming recurrence where
f(0)=1and for i >0, f(i) =Y g(j,i) f(j — 1).
J

NADC 2020: Circle of Friends Solution April 22nd, 2021 3/5




Optimizing the Dynamic Programming Approach

The most naive implementation of the above takes O(N3) time, as there
are O(N) states, O(N) transitions per state, and it naively takes O(N)
time to compute g(/, ).

We first note that if g(j, /) is equal to 1 for some j < i, then necessarily
g(j+1,i) is also equal to 1. Therefore, if we precompute a sparse table of
the bitwise ANDs of all subarrays with lengths equal to some power of
two, we can optimize one O(N) factor down to O(log ) to compute the
smallest j where g(j, /) is equal to 1.

There are still O(N) transitions per state, but because the j values are
contiguous, if we maintain a prefix sum for f, we can optimize that down
to O(1) time.

This allows us to solve this problem on a regular array in O(Nlog N).

NADC 2020: Circle of Friends Solution April 22nd, 2021 4/5



Returning to the Original Problem

We cannot directly apply the above solution back to the original problem -
since there are O(N) starting positions to orient the circular array, a direct
application would result in an O(N?log N) solution.

The above DP tells us how many partitions exist when a; is the “first”
element in its group. If we know that ay & a; = a3, then the above DP
actually tells how many partitions exist when ap and a; are in the same
group - namely, f(N — 1) of them. This applies for any suffix of elements
whose bitwise AND shares all the bits of a;. Once some suffix no longer
meets this criterion, then we can set a; equal to the bitwise AND of itself
and the given suffix, remove that suffix from the end of the list, and repeat
the above DP with the new list.

From the above logic, this means we can run the above DP at most 60
times, since with every suffix removal, at least one bit must be turned off.
This yields a solution which is O(60N log N).

NADC 2020: Circle of Friends Solution April 22nd, 2021 5/5



