
L-Triominoes – solution

Domagoj Bradač

September 2nd, 2021

1 An O(2W ·HW) solution using dynamic programming

We describe a dynamic programming solution which is standard for problems of this type. We build the

tiling from the bottom up and from left to right as follows. Suppose 1 ≤ r ≤ H, 1 ≤ c ≤ W and we have

so far tiled every square (r′, c′) with (r′, c′) ≤ (r, c) (and potentially some other squares in the process). In

the next step, we put a triomino covering the current square (r, c). Note that there are at most four possible

ways to do this (see Figure 1)

What do we need to keep track of? By assumption, we have already tiled all squares (r′, c′) < (r, c). It is

easy to check that the only other squares we might have additionally tiled are the following:

• (r, c′) with c′ ≥ c;

• (r + 1, c′) with c′ ≤ c.

(See Figure 2.)

In total, there are W + 1 squares which might additionally be tiled. Hence, we can describe the state of

our dynamic program as (r, c,m), where (r, c) is the position of the current square and m is a bitmask of

W + 1 bits describing which additional squares are tiled. As mentioned, the DP transition can be done in

time O(1), yielding the total running time O(2W ·HW).

2 The directed graph on bitmasks

To discuss the remaining solutions, we introduce a directed graph D. Its vertex set consists of all 2W bit-

vectors of length W. Such a vector represents a partially tiled row: 1’s correspond to occupied squares and

0’s to squares which need to be tiled. For two bit-vectors (u, v), the edge u → v appears in D if we can

complete the tiling of the row partially tiled according to bitmasks u such that the next row has partial tiling

Figure 1: Four possible ways to continue tiling. Gray squares mark the previously tiled squares and the dot
marks the current square (r, c).

1

Figure 2: Squares we need to keep track of in a DP solution

Figure 3: There are two ways to continue tiling from the bitmask 101.

corresponding to bitmask v. E.g., suppose W = 3 and u = 101. There are two ways to finish the tiling of this

row (Figure 3). Hence, there are two edges going from 101: (101, 110) and (101, 011).

Note that we can construct the entire digraph D in time O(22W ·W) using the abovementioned dynamic

programming approach.

How can we use this digraph to obtain a faster solution? Let 1 ≤ r ≤ H be an arbitrary row. Suppose we

can tile, bottom-up as before, the first r − 1 rows, possibly tiling some additional squares in row r. Let S

be the set of squares in row r which are either tiled or initially missing and let vS denote the vertex in D

corresponding to S. We say this tiling produces the set S in row r. Define

Ur =

{
vS ∈ V (D) | there is a tiling which produces S in row r

}
.

Now let vS ∈ Ur and consider a tiling of the first r−1 rows which produces S in row r. Let T be an arbitrary

subset of squares in row r + 1 and let vT its corresponding vertex in D. Let us for the moment ignore any

squares missing in row r + 1. Then, by definition of D, we can extend our tiling such that the set of tiled

squares in row r + 1 is T if and only if (vS , vT) is an edge in D. Consider a set T we can achieve this way. If

it contains any of the squares missing in row r + 1 then this tiling is invalid. Otherwise, we add the missing

squares to T, and add T to the set Ur+1 of possible configurations in the next row.

A näıve implementation of the above yields an algorithm with running time O(22W ·H +K), worse than the

dynamic programming approach.

However, this approach can be vastly improved. Let us first identify the simpler problem we want to attack.

Suppose 1 ≤ r < s ≤ H and there are no tiles between rows r and s, inclusively. Given Ur, we need to

be able to quickly determine Us. In the setting of our directed graph D, it is enough to solve the following

subproblem O(k) times.

Problem 2.1. Given a set U ⊆ V (D) and a positive integer `, determine all vertices v ∈ V (D) for which

there exists a vertex u ∈ U and a walk of length ` from v to u.

3 Matrix multiplication – O(23W ·K logH)

The first way to solve this problem uses a standard technique of matrix multiplication. It can be implemented

to run in time O(23W ·K logH). Using bitwise operations one can achieve a very small constant factor (at

most 1/64 on modern architectures) compared to the usual implementation. Additionally, this approach

2

can be sped up to achieve running time O(23W · logH + 22W ·K logH), which is left as an exercise to the

reader. However, we decided not to award these speedups any additional points as they represent technical

improvements to the solution which do not introduces any of the ideas required to solve the problem fully.

4 The full solution – O(2W ·WK · C(W)).

The function C(W) is a parameter which we will introduce formally later. To motivate our solution, we start

with a definition.

Definition 4.1. The period of a directed graph is the greatest common divisor of the lengths of all (directed)

cycles in the graph.

We immediately state a useful fact which in some form can be found in most textbooks about Markov chains

(e.g. see [?]).

Fact 4.2. Let F = (V,E) be a strongly connected directed graph with period k. Then, V can be partitioned as

V = V1

·
∪V1

·
∪ . . .

·
∪Vk such that for any 1 ≤ i ≤ k, the vertices in Vi only have outgoing edges towards Vi+1,

where we denote Vk+1 = V1. Additionally, there exists a constant C = C(F), such that the following holds.

Let 1 ≤ i, j ≤ k, and let u ∈ Vi, v ∈ Vj be arbitrary vertices. Then for any integer ` ≥ C, there is a walk from

u to v of length ` if and only if j − i ≡ `(mod k).

From now on suppose that D is strongly connected. This is actually not true and we will later describe the

structure of D. However, solving the problem under the assumption that D is strongly connected captures

the relevant ideas. Suppose we are given the period k of D as well as a partition V (D) = V1

·
∪V1

·
∪ . . .

·
∪Vk

and the integer C from Fact 4.2. Then for given U and ` we can answer Problem 2.1 as follows. If ` ≥ C,

find the set I of indices 1 ≤ i ≤ k, such that U ∩ Vi 6= ∅. For each Vi, i ∈ I, add the set V(i+`)mod k to the

answer. This can be done in time O(|D|) = O(2W). If ` < C, we can answer Problem 2.1 using dynammic

programming in time O(2W · `W) as described in Section 1. Combining the two and recalling that we need

to solve O(K) instances of Problem 2.1, we derive an algorithm with time complexity O
(
2W ·WK ·C(W)

)
,

where C = C(W) is the mentioned constant.

Finally, we describe the describe the structure of D. The cases W = 2, 3 have a different structure than larger

values and these cases need to be handled separately. We leave this as a simple exercise for the reader. (Or

see the attached source codes.) For W ≥ 4:

a) If W is odd, there are two special vertices, those corresponding to masks 1010 . . . 101 and 0101 . . . 010.

The former has no incoming edges (it is impossible to achieve this configuration by tiling the previous

row) while the latter has no outgoing edges (it is impossible to continue the corresponding tiling). From

now on we ignore these vertices and all of the following statements come with the exception of special

vertices.

b) If W is not divisible by 3, then there is a single weakly connected component, it is also strongly

connected, and has period 3. If W is divisible by 3, then there are three connected components V0, V1, V2,

all are strongly connected and have period 1. The partition from Fact 4.2 in the former case, and the

connected components in the latter, correspond to residues modulo 3 of the number of 1’s in the

corresponding bitmasks.

c) For every non-trivial strongly connected component D′ of D, we have C(D′) ≤ 11. :-)

3

All of these statements can be verified with a piece of code which runs for a few minutes or less. In addition,

the first point can easily be found with pen and paper. The second point can be guessed by considering

residues modulo 3. The third point is difficult to guess precisely and is the most difficult to verify. That

being said, obtaining (or guessing) a reasonably good upper bound on C is enough to obtain full points.

Having determined the structure of D, we can hard-code it into our program and we do not need to explicitly

generate the digraph D.

5 Subtasks

The following presents the subtasks for this problem and their intended solutions.

Subtask Score Constraint Intended solution

1 10 H ≤ 1000 Dynamic programming

2 7 K = 0 Pen and paper analysis

3 11 W ≤ 3 This subtask can be solved using matrix multiplication.

However, it can also be solved by doing a pen and paper

analysis of the directed graph D. Such a solution of the

subtask can lead to a full solution.

4 17 4 ≤W ≤ 6 Matrix multiplication

5 35 7 ≤W ≤ 13 Full solution

6 20 No special constraints Full solution, correct handling of the special cases W = 2, 3.

4

