C: Cangaroo

Problem Author: Abe Wits

- Problem: Given a $n \times m$ grid with marked locations, what is the minimum amount of 2×2 cans needed to cover all marked locations?

Statistics: 11 submissions, 3 accepted, 8 unknown

C: Cangaroo
Problem Author: Abe Wits

■ Problem: Given a $n \times m$ grid with marked locations, what is the minimum amount of 2×2 cans needed to cover all marked locations?

- Solution: Do DP and calculate what the minimal number of cans is needed if you fill up the last r rows for a given can placement of the top row.
For calculating the next row, iterate over all rows that support a can placement and take the best.

Statistics: 11 submissions, 3 accepted, 8 unknown

■ Problem: Given a $n \times m$ grid with marked locations, what is the minimum amount of 2×2 cans needed to cover all marked locations?

- Solution: Do DP and calculate what the minimal number of cans is needed if you fill up the last r rows for a given can placement of the top row.
For calculating the next row, iterate over all rows that support a can placement and take the best.

$$
\mathrm{DP}[\text { row }][\mathcal{C}]=\left\{\begin{array}{lr}
|\mathcal{C}|+\min _{\mathcal{D} \text { supports } \mathcal{C}} \mathrm{DP}[\text { row }-1][\mathcal{D}] & \text { if } \mathcal{C} \text { covers locations }, \\
\infty & \text { else }
\end{array}\right.
$$

Statistics: 11 submissions, 3 accepted, 8 unknown

■ Problem: Given a $n \times m$ grid with marked locations, what is the minimum amount of 2×2 cans needed to cover all marked locations?

- Solution: Do DP and calculate what the minimal number of cans is needed if you fill up the last r rows for a given can placement of the top row.
For calculating the next row, iterate over all rows that support a can placement and take the best.

$$
\operatorname{DP}[\operatorname{row}][\mathcal{C}]=\left\{\begin{array}{lr}
|\mathcal{C}|+\min _{\mathcal{D} \text { supports } \mathcal{C}} \mathrm{DP}[\text { row }-1][\mathcal{D}] & \text { if } \mathcal{C} \text { covers locations }, \\
\infty & \text { else }
\end{array}\right.
$$

■ Number of can placements is F_{m+1}, the $(m+1)$ th Fibonacci number. Time complexity: $\mathcal{O}\left(n \cdot F_{m+1}^{2}\right)=\mathcal{O}\left(n \cdot 3.3^{m}\right)$ when using bitmasks.
Statistics: 11 submissions, 3 accepted, 8 unknown

