D: Decelerating Jump

Problem Author: Onno Berrevoets

■ Problem: Given a sequence of n integers p_{1}, \ldots, p_{n}, find a subsequence $1=p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{k}}=n$ such that the distance between consecutive elements does not increase.

Statistics: 146 submissions, 38 accepted, 43 unknown

D: Decelerating Jump

Problem Author: Onno Berrevoets

■ Problem: Given a sequence of n integers p_{1}, \ldots, p_{n}, find a subsequence $1=p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{k}}=n$ such that the distance between consecutive elements does not increase.

■ Cubic solution: Keep a DP table dp [position] [speed], which is computed as

$$
\mathrm{dp}[i][s]=p_{i}+\max _{k \geq s} \operatorname{dp}[i-k][k]
$$

Statistics: 146 submissions, 38 accepted, 43 unknown

D: Decelerating Jump

Problem Author: Onno Berrevoets

■ Problem: Given a sequence of n integers p_{1}, \ldots, p_{n}, find a subsequence $1=p_{i_{1}}<p_{i_{2}}<\cdots<p_{i_{k}}=n$ such that the distance between consecutive elements does not increase.
■ Cubic solution: Keep a DP table dp [position] [speed], which is computed as

$$
\mathrm{dp}[i][s]=p_{i}+\max _{k \geq s} \operatorname{dp}[i-k][k]
$$

■ Quadratic solution: Loop over speed s from $n-1$ to 1 , keeping track of the maximum score if you end in each cell with speed at least s. Then update all positions i from 1 to n :

$$
\mathrm{dp}[i]=\max \left(\mathrm{dp}[i], p_{i}+\mathrm{dp}[i-s]\right)
$$

Statistics: 146 submissions, 38 accepted, 43 unknown

