I: Implementation Irregularities
 Problem Author: Ragnar Groot Koerkamp

- Problem: Given a list of $n \leq 10^{5}$ problems, the computer time t_{i} needed to solve each of them, and the time s_{i} each was solved, find the minimal number of computers used.

Statistics: 190 submissions, 52 accepted, 39 unknown

I: Implementation Irregularities

Problem Author: Ragnar Groot Koerkamp

■ Problem: Given a list of $n \leq 10^{5}$ problems, the computer time t_{i} needed to solve each of them, and the time s_{i} each was solved, find the minimal number of computers used.

■ Insight: If there are C computers and the team solves their k th problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.

Statistics: 190 submissions, 52 accepted, 39 unknown

I: Implementation Irregularities

Problem Author: Ragnar Groot Koerkamp

■ Problem: Given a list of $n \leq 10^{5}$ problems, the computer time t_{i} needed to solve each of them, and the time s_{i} each was solved, find the minimal number of computers used.

■ Insight: If there are C computers and the team solves their k th problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.
■ Sort the problems by solve time, discarding any unsolved problems.

Statistics: 190 submissions, 52 accepted, 39 unknown

I: Implementation Irregularities

Problem Author: Ragnar Groot Koerkamp

- Problem: Given a list of $n \leq 10^{5}$ problems, the computer time t_{i} needed to solve each of them, and the time s_{i} each was solved, find the minimal number of computers used.

■ Insight: If there are C computers and the team solves their k th problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.
■ Sort the problems by solve time, discarding any unsolved problems.

- For each k we must have $\sum_{i=1}^{k} t_{i} \leq C \cdot s_{k}$.

Statistics: 190 submissions, 52 accepted, 39 unknown

I: Implementation Irregularities

Problem Author: Ragnar Groot Koerkamp

- Problem: Given a list of $n \leq 10^{5}$ problems, the computer time t_{i} needed to solve each of them, and the time s_{i} each was solved, find the minimal number of computers used.

■ Insight: If there are C computers and the team solves their k th problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.
■ Sort the problems by solve time, discarding any unsolved problems.

- For each k we must have $\sum_{i=1}^{k} t_{i} \leq C \cdot s_{k}$.
- The answer C is the maximum of $\left(\sum_{i=1}^{k} t_{i}\right) / s_{k}$, rounded up.

Statistics: 190 submissions, 52 accepted, 39 unknown

I: Implementation Irregularities

Problem Author: Ragnar Groot Koerkamp

- Problem: Given a list of $n \leq 10^{5}$ problems, the computer time t_{i} needed to solve each of them, and the time s_{i} each was solved, find the minimal number of computers used.

■ Insight: If there are C computers and the team solves their k th problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.
■ Sort the problems by solve time, discarding any unsolved problems.

- For each k we must have $\sum_{i=1}^{k} t_{i} \leq C \cdot s_{k}$.
- The answer C is the maximum of $\left(\sum_{i=1}^{k} t_{i}\right) / s_{k}$, rounded up.

■ Alternatively, you can binary search.

Statistics: 190 submissions, 52 accepted, 39 unknown

