

Problem: Given a list of $n \le 10^5$ problems, the computer time t_i needed to solve each of them, and the time s_i each was solved, find the minimal number of computers used.

- **Problem:** Given a list of $n \le 10^5$ problems, the computer time t_i needed to solve each of them, and the time s_i each was solved, find the minimal number of computers used.
- Insight: If there are C computers and the team solves their kth problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.

- **Problem:** Given a list of $n \le 10^5$ problems, the computer time t_i needed to solve each of them, and the time s_i each was solved, find the minimal number of computers used.
- Insight: If there are C computers and the team solves their kth problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.
- Sort the problems by solve time, discarding any unsolved problems.

- **Problem:** Given a list of $n \le 10^5$ problems, the computer time t_i needed to solve each of them, and the time s_i each was solved, find the minimal number of computers used.
- Insight: If there are C computers and the team solves their kth problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.
- Sort the problems by solve time, discarding any unsolved problems.
- For each k we must have $\sum_{i=1}^{k} t_i \leq C \cdot s_k$.

- **Problem:** Given a list of $n \le 10^5$ problems, the computer time t_i needed to solve each of them, and the time s_i each was solved, find the minimal number of computers used.
- Insight: If there are C computers and the team solves their kth problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.
- Sort the problems by solve time, discarding any unsolved problems.
- For each k we must have $\sum_{i=1}^{k} t_i \leq C \cdot s_k$.
- The answer C is the maximum of $\left(\sum_{i=1}^{k} t_i\right) / s_k$, rounded up.

- **Problem:** Given a list of $n \le 10^5$ problems, the computer time t_i needed to solve each of them, and the time s_i each was solved, find the minimal number of computers used.
- Insight: If there are C computers and the team solves their kth problem after s minutes, the total computer time available for the first k problems is $C \cdot s$.
- Sort the problems by solve time, discarding any unsolved problems.
- For each k we must have $\sum_{i=1}^{k} t_i \leq C \cdot s_k$.
- The answer C is the maximum of $\left(\sum_{i=1}^{k} t_i\right) / s_k$, rounded up.
- Alternatively, you can binary search.