

- **Problem:** Connect opposite corners of a rectangle with a cable of length  $\ell$  such that
  - Line segments do not intersect.
  - The coordinate points of the path should not be too close (< 1) to each other.



BAPC 2021



- **Problem:** Connect opposite corners of a rectangle with a cable of length  $\ell$  such that
  - Line segments do not intersect.
  - The coordinate points of the path should not be too close (< 1) to each other.
- **Solution:** Zig-zag and use binary search for the last point:





- **Problem:** Connect opposite corners of a rectangle with a cable of length  $\ell$  such that
  - Line segments do not intersect.
  - The coordinate points of the path should not be too close (< 1) to each other.
- **Solution:** Zig-zag and use binary search for the last point:





- **Problem:** Connect opposite corners of a rectangle with a cable of length  $\ell$  such that
  - Line segments do not intersect.
  - The coordinate points of the path should not be too close (< 1) to each other.
- **Solution:** Zig-zag and use binary search for the last point:





- **Problem:** Connect opposite corners of a rectangle with a cable of length  $\ell$  such that
  - Line segments do not intersect.
  - The coordinate points of the path should not be too close (< 1) to each other.
- **Solution:** Zig-zag and use binary search for the last point:



BAPC 2021



- **Problem:** Connect opposite corners of a rectangle with a cable of length  $\ell$  such that
  - Line segments do not intersect.
  - The coordinate points of the path should not be too close (< 1) to each other.
- **Solution:** Zig-zag and use binary search for the last point:



BAPC 2021



- **Problem:** Connect opposite corners of a rectangle with a cable of length  $\ell$  such that
  - Line segments do not intersect.
  - The coordinate points of the path should not be too close (< 1) to each other.
- **Solution:** Zig-zag and use binary search for the last point:





**Bonus slide:** Honourable mention for team "print(math.tan(float(input())))", for creating a solution without any diagonal lines and just simple arithmetic (which none of the jury members had thought of):

