K: Kinking Cables

Problem Author: Boas Kluiving

- Problem: Connect opposite corners of a rectangle with a cable of length ℓ such that
- Line segments do not intersect.
- The coordinate points of the path should not be too close (<1) to each other.

Statistics: 28 submissions, 2 accepted, 18 unknown

K: Kinking Cables

Problem Author: Boas Kluiving
■ Problem: Connect opposite corners of a rectangle with a cable of length ℓ such that

- Line segments do not intersect.
- The coordinate points of the path should not be too close (<1) to each other.

■ Solution: Zig-zag and use binary search for the last point:

Statistics: 28 submissions, 2 accepted, 18 unknown

K: Kinking Cables

Problem Author: Boas Kluiving
■ Problem: Connect opposite corners of a rectangle with a cable of length ℓ such that

- Line segments do not intersect.
- The coordinate points of the path should not be too close (<1) to each other.

■ Solution: Zig-zag and use binary search for the last point:

Statistics: 28 submissions, 2 accepted, 18 unknown

K: Kinking Cables

Problem Author: Boas Kluiving
■ Problem: Connect opposite corners of a rectangle with a cable of length ℓ such that

- Line segments do not intersect.
- The coordinate points of the path should not be too close (<1) to each other.

■ Solution: Zig-zag and use binary search for the last point:

Statistics: 28 submissions, 2 accepted, 18 unknown

K: Kinking Cables

Problem Author: Boas Kluiving
■ Problem: Connect opposite corners of a rectangle with a cable of length ℓ such that

- Line segments do not intersect.
- The coordinate points of the path should not be too close (<1) to each other.

■ Solution: Zig-zag and use binary search for the last point:

Statistics: 28 submissions, 2 accepted, 18 unknown

K: Kinking Cables

Problem Author: Boas Kluiving
■ Problem: Connect opposite corners of a rectangle with a cable of length ℓ such that

- Line segments do not intersect.
- The coordinate points of the path should not be too close (<1) to each other.

■ Solution: Zig-zag and use binary search for the last point:

Statistics: 28 submissions, 2 accepted, 18 unknown

K: Kinking Cables

Problem Author: Boas Kluiving
■ Problem: Connect opposite corners of a rectangle with a cable of length ℓ such that

- Line segments do not intersect.
- The coordinate points of the path should not be too close (<1) to each other.

■ Solution: Zig-zag and use binary search for the last point:

Statistics: 28 submissions, 2 accepted, 18 unknown

K: Kinking Cables

Problem Author: Boas Kluiving
Bonus slide: Honourable mention for team "print(math.tan(float(input())))", for creating a solution without any diagonal lines and just simple arithmetic (which none of the jury members had thought of):

