L: Lopsided Lineup

Problem Author: Jorke de Vlas

■ Problem: Split a group of people in two equally sized teams that are as unequally matched as possible.

Statistics: 12 submissions, 7 accepted, 3 unknown

L: Lopsided Lineup

Problem Author: Jorke de Vlas

■ Problem: Split a group of people in two equally sized teams that are as unequally matched as possible.

- Although the question is about synergy, the solution is actually to take strong players for the winning team.

Statistics: 12 submissions, 7 accepted, 3 unknown

L: Lopsided Lineup

Problem Author: Jorke de Vlas

■ Problem: Split a group of people in two equally sized teams that are as unequally matched as possible.

- Although the question is about synergy, the solution is actually to take strong players for the winning team.
- Take the first $n / 2$ players as the strong team. Then what is the difference in scores?

Statistics: 12 submissions, 7 accepted, 3 unknown

L: Lopsided Lineup

Problem Author: Jorke de Vlas

- Problem: Split a group of people in two equally sized teams that are as unequally matched as possible.
- Although the question is about synergy, the solution is actually to take strong players for the winning team.
- Take the first $n / 2$ players as the strong team. Then what is the difference in scores?

$$
\text { score }=\frac{1}{2}(S-W)
$$

L: Lopsided Lineup

Problem Author: Jorke de Vlas

- Problem: Split a group of people in two equally sized teams that are as unequally matched as possible.
- Although the question is about synergy, the solution is actually to take strong players for the winning team.
- Take the first $n / 2$ players as the strong team. Then what is the difference in scores?

$$
\text { score }=\frac{1}{2}(S-W)
$$

L: Lopsided Lineup

Problem Author: Jorke de Vlas

- Problem: Split a group of people in two equally sized teams that are as unequally matched as possible.
- Although the question is about synergy, the solution is actually to take strong players for the winning team.
- Take the first $n / 2$ players as the strong team. Then what is the difference in scores?

$$
\text { score }=\frac{1}{2}((S+X)-(W+X))
$$

L: Lopsided Lineup

Problem Author: Jorke de Vlas

- Problem: Split a group of people in two equally sized teams that are as unequally matched as possible.
- Although the question is about synergy, the solution is actually to take strong players for the winning team.
- Take the first $n / 2$ players as the strong team. Then what is the difference in scores?

$$
\text { score }=\frac{1}{2}((S+X)-(W+X))
$$

L: Lopsided Lineup

Problem Author: Jorke de Vlas

$$
\text { score }=\frac{1}{2}((S+X)-(W+X))
$$

- The score of each team is the sum of its players' row sums.

L: Lopsided Lineup

Problem Author: Jorke de Vlas

$$
\text { score }=\frac{1}{2}((S+X)-(W+X))
$$

- The score of each team is the sum of its players' row sums.
- If you take any other strong team, you can reorder the matrix c so that your chosen team is the first $n / 2$. That does not change the row sums!

L: Lopsided Lineup

Problem Author: Jorke de Vlas

■ Solution: for each player compute its strength (i.e. the sum of its row). Take the $n / 2$ strongest players for the strong team, and the others for the weak team.

- Complexity: $\mathcal{O}\left(n^{2}\right)$.

