Problem Author: Jorke de Vlas

Problem

Given are the 'explodification' rules for an atom with a certain amount of neutrons:

- An atom with $k \leq n$ neutrons will be converted into a_{k} units of energy.
- An atom with $k>n$ will be decomposed into parts $i, j \geq 1$ with $i+j=k$, which are then recursively explodificated.

Given an atom with a fixed number of neutrons, what is the minimum energy released?

Observations

Since the decomposition is arbitrary, we have to assume the worst case - for $k>n$ define:

$$
a_{k}:=\min _{1 \leq i \leq k-1} a_{i}+a_{k-i}
$$

There are upto 10^{5} queries with k upto 10^{9}, so we cannot naively compute all values a_{i} upto this maximum. Naive computation requires $O\left(k^{2}\right)$ time for the first k values.

Problem Author: Jorke de Vlas

Observation 1

Our first crucial observation is that optimal solutions have a recursive structure. We can write any explodification sequence as a binary tree. This is the first sample, $k=8$:

Recall this sample had $a_{1, \ldots, 4}=\{2,3,5,7\}$.

Observation 1

For a given query k, imagine recursively following the decomposition $a_{k}=a_{i}+a_{k-i}$ until we end up with a decomposition:

$$
a_{k}=\sum_{j=1}^{m} a_{i j} \quad \text { subj. to } k=\sum_{j=1}^{m} i_{j} \text {, with } i_{j} \in\{1, \ldots, n\} .
$$

So the leaves of the decomposition tree are a collection of indices i_{j} that sum to k. Is any decomposition (i_{j}) satisfying the right hand side realizable?

No - to actually construct this explodification sequence we need to end with some a_{x}, a_{y} with $x+y>n$. If $x+y \leq n$, there is no guarantee that $a_{x+y}=a_{x}+a_{y}$. (Example: for $n \gg 1$, a sequence of all a_{1} 's is generally impossible.)

A sequence is realizable if it contains two x, y with $x+y>n$. After that, we can 'add' new atoms $a_{i j}$ inductively to construct the explodification tree. In fact any 'prefix' of such a sequence is optimal.

Faster computation

Now we can improve the computation of the first k values from $O\left(k^{2}\right)$ to $O(n k)$:

$$
a_{k}=\min _{1 \leq i \leq n} a_{i}+a_{k-i}
$$

Of course this is still not fast enough with k upto 10^{9}.

Observation 2

Let $m \in\{1, \ldots, n\}$ minimize a_{m} / m. When a query k is large enough, most of the terms in the decomposition will be a_{m}. Indeed, if after removing the two distinguished values a_{x}, a_{y} from the sequence we still have m or more values in the tree that are not a_{m}, by the pigeonhole principle there must be a subset of them that have indices that sum up to a multiple of m, and we can replace them by a_{m} 's to get a decomposition that is not worse.

Hence, any decomposition can be written in such a way that there are at most $m+1$ terms that are not a_{m}. In fact we can rearrange the sequence to have these terms in the front, and then fill in the gap with a_{m}-terms.

Full solution

Let m minimize a_{i} / i over all $i \in\{1, \ldots, n\}$, and use the $O(n k)$ algorithm from earlier to construct the first $(m+1) n$ terms in time $O\left(n^{3}\right)$.

For each query k, find the smallest $j \geq 0$ such that $k-j m \in\{1, \ldots,(m+1) n\}$, and output with $a_{k-j m}+j \cdot a_{m}$.

Final runtime $O\left(n^{3}+q\right)$. Efficient implementations of e.g. $O\left(n^{4}+q\right)$ could also work.

Statistics: 421 submissions, $51+$? accepted

