Problem

Given the location of a piece on an $n \times n$ playing board and n types of moves ($n \le 10^5$). Find a position on the board that the piece cannot reach within two moves.

Solution

- Simpler question: Given a specific position, can the piece reach that position within two moves?
 - BFS/DFS will take $O(n^2)$ time, which is too slow.
 - Bidirectional search:
 - F: the set of positions that the piece can reach within one move.
 - *B*: the set of positions that can reach the target position within one move.
 - F and B intersect iff. the piece can reach the position within two moves.
 - These sets can be constructed and intersected in $O(n \log n)$ time.
- Asking this question for all n^2 positions on the board is way too slow.
 - Do we have to try all of them?

Solution

- In the worst case, the piece can reach at most approx. $n^2/2$ positions on the board within two moves.
- If we pick a random position on the board, the piece can reach that position within two moves with probability at most 1/2.
 - Repeating this k times, the probability that the piece can reach all of them within two moves is at most $1/2^k$, which quickly tends to 0.
- Run bidirectional search on 30 random positions.

Gotchas

- The piece is not allowed to move off the playing board.
- When $n \in \{2, 3\}$, the piece may be able to reach all the positions within two moves.

Statistics: 210 submissions, 37 + ? accepted