

Problem

Permute a list of n integers ($n \le 10^5$) such that for each $2 \le i \le n-1$ it holds that $|t'_{i-1} - t'_i| \le |t'_i - t'_{i+1}|$.

Solution

- Sort the array.
- The largest possible value of $|t_x t_y|$ is $\max(t) \min(t)$.
- Put max(t) in the *n*th place and min(t) in the *n* 1th place. It is guaranteed that no other difference will be larger.
- Repeat the same logic with the last two elements fixed and t' as the remaining elements.
- Now the largest value of $|t_x t_y|$ is $\max(t') \min(t)$. Put $\max(t')$ in the n 2nd place.
- Continue, alternating between min and max of the remaining elements.

Gotchas

• Not sorting the array in advance.

Statistics: 199 submissions, 114 + ? accepted