Editorial: Horses

To solve 1st subtask we need just calculate our answer using dynamic programming dp[i][j] - what is
maximal profit if we pass i-1 days and we have j horses then we got j * x_i horses and check all number of
horses that we sell today and go to the next day.

#1 Observation

First of all let’s consider to points i and j, what if we sell k horses in i-th and j-th day. And check in what day
it's more preferable.

Profitofi-thday: x 1 *x 2*..*x_i*y_i
Profitofj-thday: x 1 *x 2* .. *x i*x_i+1*..*xj*yj
It depends on this

yi?x i+l * . *xj*yj

>

<

so if it's > then it's profitably sell horses in i-th day

if it's < then it's profitably sell horses in j-th day

if it's = then it's no matter when we sell them in i-th day or in j-th day
From this point it's clear that it is better to sell all our horses in one day that gives us maximal profit.
Using this observation we can solve 2 subtasks.

After each query we can solve problem in O(n)

#2 Observation

Ifall x_i >= 2, then after 30 days x_i * x_i+1 *x_i+2 * ... *x_i+29 >= 2”30 > 10”9, so position less then and equal
n-30 never can be optimal solution, because even if y n-30 =10"9andy_n=1,2230 *y_n >y_n-30

It's enough to check only last 30 positions

#3 Observation

The main problem in last subtask is x_i = 1, but in that cases multiplication first x_i numbers and x_i-1 is not
change, this gives us opportunity to merge consecutive positions with x_i = 1, when we merge this positions
we should take the maximal y_i. So if we do that, it's enough to check last 60 positions, because it can be no
more than 30 merged 1's between 30 last positions where x_i >= 2.

So we can store our state in some structure like set, that provide us information about current merged
positions, and some structure that provide us RMQ. So solution per query will be log(10”9) * log(n). Then we
have to calculate answer we can use something like segment tree.

So overall complexity will be O(m *log(1079) * log(n)).



