Editorial: Sorting

Subtask1

In subtask 1, Bob do not change sequence s, thus any method that can sort the sequence in

increasing order will be a solution.

A bubble sort or insertion sort may cost at most O(n%) swaps. A merge sort or quick sort may cost

at most O(nlogn) swaps.

The optimized solutions is selection sort. Since the sequence contains 0, 1, .., n-1 exactly once, we
can swap value i into position i one by one (i=0, 1, ..., n-1). This costs at most n-1 swaps. It can be

proved that the number of swaps is minimized.

Subtask?2

In subtask 2, Bob will swap positions 0 and 1, which makes the problem more complicated.
However, the solution does not change much. We can swap value i into position i one by one from
the rightmost position to the leftmost one (i=n-1, n-2, .., 1, 0). The number of swaps is also

minimized.

Subtask3

In subtask 3, we distinguish Alice and Bob’s swaps. Let a[0]=0, a[1]=1, ..., a[n-1]=n-1 be n plates in
a queue, and b[0]=s[0], b[1]=s[1], ..., b[n-1]=s[n-1] be n apples on plates O, 1, .., n-1. Then
sli]=blal[i]].

0

O DO DO DO D

If Bob swap two positions x and y, it can be viewed as two plates are swapped. For example, in the

above case, if Bob swaps numbers at positions 0 and 1, the result sequence will be:
0

DO DO DO DO D

If Alice swap two positions p and g, it can be viewed as two apples s[p] and s[q] are swapped. For

example, if Alice swaps numbers are positions 0 and 4, it can be viewed as apples s[0]=3 and s[4]=0

are swapped:

3

D C D)




Now Bob swaps two plates in each round and Alice swaps two apples. Since they operates on
difference objects, the sequence of operations can be separated. Let t be the number of rounds Alice
takes. It can be viewed as Bob first swap t pairs of plates, then Alice swap t pairs of apples. Since
Alice can sort all apples in increasing order in less than n swaps, the minimum number of rounds

is less than n.

Solution: One solution for this problem would be enumerate ¢t from 0 to n-1, and check whether
Alice can sort all apples within t swaps after Bob swap first ¢t pairs of plates. This costs O(n?) time

and will get timeout for some test cases.

Binary Search: For this problem, if (po, qo), (p1, q1), ---» (Pe1, 1) be a solution for Alice in t swaps,
then (po, q0), (p1, 1), - (Pe1, 1), (X6 Vi), - (Xe-1, Ye-1) must be a solution for Alice in e swaps (e > £).
Which means that if there is a feasible solution in t swaps, then there must be feasible solutions in
more than t swaps. Which makes the problem solvable using binary search. The time complexity

reduces to O(nlogn) and full mark is expected.

Implementation: The implementation of this problem may be a little bit error prone. It is
recommended that programs first find out pairs of numbers (i.e. pairs of apples) to swap, then
transform numbers into their positions. An inversed array that maps each number to its position

is helpful.

Comments

The O(n?) time solution is essentially updating a set of cycles under splicing (edge insertion /
deletion) operations. Some care is needed in test data making to distinguish it from O(nlogn) time

solutions, perhaps the bounds can be raised to ease this process.

This solution can also be made to run in 0(n'5) or O(nlogn) time using BBST-like data structures

(e.g. http://contest.felk.cvut.cz/11cerc/solved/r/). This is way more work than the intended

solution though.



