
Problem B
Buffalo Barricades

Submits: 17
Accepted: at least 1

First solved by: UW1
University of Warsaw

(Dębowski, Radecki, Sommer)
02:40:43

Author: Luka Kalinovčić





1



1

2



1

2

3



1

2

4

3



High level algorithm:

1) Identify the regions at the end, when all fences are up.

2) Count the buffalos in each region.

3) Work backwards, removing fences and merging the 
two regions that become one (using the standard 
union-find algorithm). Prior to the fence removal we 
simply record the current number of buffalos in the 
region to output later.

We'll do 1) and 2) together in a single pass of a 
sweep-line algorithm. In addition to that, we'll also 
compute the ids of regions that need to be merged in 
step 3) at each fence removal.



Sweep-line algorithm overview:

We process fence posts and buffalos in order of 
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences 
that have not yet hit another horizontal fence.

a) When we encounter a buffalo, we find the closest 
active fence to the right, that's the fence of a region 
containing the buffalo at the end.



Sweep-line algorithm overview:

We process fence posts and buffalos in order of 
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences 
that have not yet hit another horizontal fence.

b) When we encounter a fence, we find the neighboring 
region that it will get merged with when the fence is 
removed the same way: it's the first active fence to the 
right.



Sweep-line algorithm overview:

We process fence posts and buffalos in order of 
decreasing y coordinate.

At each step we maintain a set of "active" vertical fences 
that have not yet hit another horizontal fence.

c) We also erect the horizontal fence starting from the 
fence post going to the left. Our fence will hit the first 
active fence to the left that has a smaller index (i.e. was 
erected prior to this fence). Other vertical fences we 
encounter along the way will, in turn, hit the horizontal 
fence we are building, so we remove them from the 
active set.



1

2

3

4



1

2

3

4



2

3

1

3



2

3

1

3



2

1

4

3



2

1

4

3



2

1

4

3



2

1

4

3



2

1

4

3



2

1

4

3



2

1

4

3



2

1

4

3



2

1

4

3



2

1

4

3



1

4

3

2



1

4

3

2



1

4

3

2



Complexity O((N + M) log (N + M))


