
Problem C
Cumulative Code

Submits: 2
Accepted: ?

Author: Ivan Paljak, Luka Kalinovčić

1

2 3

4 5 6 7

1

2 3

5 6 7

Code: 2

1

2 3

6 7

Code: 2 2

1

3

6 7

Code: 2 2 1

3

6 7

Code: 2 2 1 3

3

7

Code: 2 2 1 3 3

...

The removal order: left subtree, right subtree, root node.

Type A subtree

The removal order: left subtree, root node, right subtree.

Type B subtree

In the analysis we'll focus on type A trees only. Type B is
dealt with the same way.

Let's start simple and find a recursive formula fx(k) to
sum up the code generated by a type A subtree of depth
k, where root is labeled with number x.

x

...

For k = 1, there is only a single node in the subtree.

As we remove it, we append (x div 2) to the code.

fx(1) = (x div 2)

Let's start simple and find a recursive formula fx(k) to
sum up the code generated by a type A subtree of depth
k, where root is labeled with number x.

...

fx(2) = x + x + (x div 2) = 2x + (x div 2)

2x

x

2x+1

Let's start simple and find a recursive formula fx(k) to
sum up the code generated by a type A subtree of depth
k, where root is labeled with number x.

fx(3) = 2x + 2x + x + 2x+1 + 2x+1 + x + (x div 2)

 = 10x + 2 + (x div 2)

...

4x+2

2x+1

4x+34x

2x

4x+1

x

In general, fx(k) = ak·x + bk + ck·(x div 2) and we can
compute it recursively:

fx(k) = f2x(k−1) + f2x+1(k−1) + (x div 2)

f2x(k−1) = ak-1·2x + bk-1 + ck-1·(2x div 2)

= (2ak-1 + ck-1)x + bk-1

f2x+1(k−1)= ak-1·(2x + 1) + bk-1 + ck-1·((2x + 1) div 2)

= (2ak-1 + ck-1)x + ak-1 + bk-1

fx(k) = (4ak-1 + 2ck-1)x + ak-1 + 2bk-1 + (x div 2)

ak = 4ak-1 + 2ck-1 bk = ak-1 + 2bk-1 ck = 1

Now, let's come up with a formula that only sums up
code elements at indices in the query

Q = {a, a + d, a + 2·d, ..., a + (m − 1)·d}.

Let nextQ(i) be the smallest index in Q greater than or
equal to i.

Let gx(k, i) be the sum of elements at the required
indices, given a subtree of depth k with root labeled x,
and given that there are already i elements in the output
code before we process the subtree.
gx(k, i) = g2x(k−1, i) + g2x+1(k−1, i + 2k−1 − 1)

+ ((i + 2k − 1) ∊ Q)·(x div 2)

The recursive formula we have is still summing elements
one-by-one. We need to optimize it a bit.

1) If no index in [i + 1, i + 2k - 1] is in query Q, return 0
immediately.

2) Memoize function calls where:

● k ≤ K/2 and
● [i + 1, i + 2k - 1] is entirely within the query interval

[a, a + a + (m − 1)·d].

The key for the memoization is (k, nextQ(i) - i).

Because of 1), nextQ(i) ≤ i + 2k - 1, so we have O(2K/2)
states to memoize.

The remaining cases where we don't return 0 or
memoize are:

1) Cases for type B subtrees. There are only O(K) such
function calls.

2) Cases with k > K/2. There are O(2K/2) function calls.

3) Cases where [i + 1, i + 2k - 1] intersects with the query
interval [a, a + a + (m − 1)·d], but is not entirely within.
There are only O(K) such function calls.

Overall complexity of the algorithm is O(2K/2) per query.

