Problem C Cumulative Code

Submits: 2
Accepted: ?

Author: Ivan Paljak, Luka Kalinovčić

Code: 2

Code: 22

Code: 221

Code: 2213

Code: 22133

Type A subtree

The removal order: left subtree, right subtree, root node.

Type B subtree

The removal order: left subtree, root node, right subtree.
In the analysis we'll focus on type A trees only. Type B is dealt with the same way.

Let's start simple and find a recursive formula $f_{x}(k)$ to sum up the code generated by a type A subtree of depth k , where root is labeled with number x .

For $k=1$, there is only a single node in the subtree.
As we remove it, we append (x div 2) to the code.
$f_{x}(1)=(x \operatorname{div} 2)$

Let's start simple and find a recursive formula $f_{x}(k)$ to sum up the code generated by a type A subtree of depth k , where root is labeled with number x .

$f_{x}(2)=x+x+(x \operatorname{div} 2)=2 x+(x \operatorname{div} 2)$

Let's start simple and find a recursive formula $f_{x}(k)$ to sum up the code generated by a type A subtree of depth k , where root is labeled with number x .

In general, $f_{x}(k)=a_{k} \cdot x+b_{k}+c_{k} \cdot(x \operatorname{div} 2)$ and we can compute it recursively:

$$
\left.\begin{array}{l}
f_{x}(k)=f_{2 x}(k-1)+f_{2 x+1}(k-1)+(x \operatorname{div} 2) \\
\begin{array}{rl}
f_{2 x}(k-1) & =a_{k-1} \cdot 2 x+b_{k-1}+c_{k-1} \cdot(2 x \operatorname{div} 2) \\
& =\left(2 a_{k-1}+c_{k-1}\right) x+b_{k-1}
\end{array} \\
f_{2 x+1}(k-1)=a_{k-1} \cdot(2 x+1)+b_{k-1}+c_{k-1} \cdot((2 x+1) \operatorname{div} 2) \\
\quad=\left(2 a_{k-1}+c_{k-1}\right) x+a_{k-1}+b_{k-1}
\end{array}\right\} \begin{aligned}
& f_{x}(k)=\left(4 a_{k-1}+2 c_{k-1}\right) x+a_{k-1}+2 b_{k-1}+(x \operatorname{div} 2) \\
& a_{k}=4 a_{k-1}+2 c_{k-1} \quad b_{k}=a_{k-1}+2 b_{k-1} \quad c_{k}=1
\end{aligned}
$$

Now, let's come up with a formula that only sums up code elements at indices in the query

$$
Q=\{a, a+d, a+2 \cdot d, \ldots, a+(m-1) \cdot d\} .
$$

Let next ${ }_{Q}(\mathrm{i})$ be the smallest index in Q greater than or equal to i.
Let $g_{x}(k, i)$ be the sum of elements at the required indices, given a subtree of depth k with root labeled x, and given that there are already i elements in the output code before we process the subtree.

$$
\begin{aligned}
g_{x}(k, i) & =g_{2 x}(k-1, i)+g_{2 x+1}\left(k-1, i+2^{k-1}-1\right) \\
& +\left(\left(i+2^{k}-1\right) \in Q\right) \cdot(x \operatorname{div} 2)
\end{aligned}
$$

The recursive formula we have is still summing elements one-by-one. We need to optimize it a bit.

1) If no index in $\left[i+1, i+2^{k}-1\right]$ is in query Q, return 0 immediately.
2) Memoize function calls where:

- $\mathrm{k} \leq \mathrm{K} / 2$ and
- $\left[i+1, i+2^{k}-1\right]$ is entirely within the query interval

$$
[a, a+a+(m-1) \cdot d] .
$$

The key for the memoization is $\left(k\right.$, next $\left._{Q}(i)-i\right)$.
Because of 1), next $_{Q}(\mathrm{i}) \leq \mathrm{i}+2^{\mathrm{k}}-1$, so we have $\mathrm{O}\left(2^{\mathrm{K} / 2}\right)$ states to memoize.

The remaining cases where we don't return 0 or memoize are:

1) Cases for type B subtrees. There are only $O(K)$ such function calls.
2) Cases with $k>K / 2$. There are $O\left(2^{K / 2}\right)$ function calls.
3) Cases where $\left[i+1, i+2^{k}-1\right]$ intersects with the query interval $[a, a+a+(m-1) \cdot d]$, but is not entirely within.
There are only $\mathrm{O}(\mathrm{K})$ such function calls.
Overall complexity of the algorithm is $\mathrm{O}\left(2^{\mathrm{K} / 2}\right)$ per query.
