
Problem E
Embedding Enumeration

Submits: 1
Accepted: ?

Author: Luka Kalinovčić

Problem: Given a tree, count the number of ways to
embed it in a 2 by N grid, such that two nodes connected
by an edge are adjacent in the grid. Node 1 has to be in
top-left cell.

1 3 5

27 6 4

9

8

Problem: Given a tree, count the number of ways to
embed it in a 2 by N grid, such that two nodes connected
by an edge are adjacent in the grid. Node 1 has to be in
top-left cell.

1 3 7

25 6

4

9

8

Observation: When we root the tree at node 1, it has to
be a binary tree. Otherwise, we have a node with degree
greater than three, which can't be embedded.

Let's build a dynamic programming solution that
enumerates all embeddings. We can describe the state
as (x, delta).

At this state, we have embedded all nodes except for
those in x's subtree. Node x is embedded at the last cell
of the longer of the two rows, and the delta is the
difference in length between the two rows.

x

delta

To make the transition, we'll try every possible
assignment of node x's children to neighboring cells.

If assignment assigns a node y to a cell below x, we also
try every possible assignment of y's children to
neighboring cell.

Let's analyze possible outcomes of such assignments.

x

delta

Trivial case: x has no children. We've found one valid
embedding.

x

delta

Node x has one child node y that was assigned to the
right cell.

x

delta

y

Node x has one child node y that was assigned to the
right cell.

We transition to state (y, delta + 1)

delta + 1

y

Node x has one child node y that was assigned to the
bottom cell. We also assign y's children to neighboring
cells.

x

delta

y

Node x has one child node y that was assigned to the
bottom cell. We also assign y's children to neighboring
cells.

If it there is a child node z assigned to the left, we know
that its subtree has form a simple chain of length up to
(delta - 1). Otherwise we can't make a valid embedding
from this assignment.

x

delta

yz

Node x has one child node y that was assigned to the
bottom cell. We also assign y's children to neighboring
cells.

If it there is a child node v assigned to the right, we
transition to state (v, 1).

x

delta

y v

Node x has one child node y that was assigned to the
bottom cell. We also assign y's children to neighboring
cells.

If it there is a child node v assigned to the right, we
transition to state (v, 1).

delta

v

In the general case, x has two children y and u, and y
has a child v assigned to the lower right cell.

We now have two nodes, u and v, whose subtrees are
not yet embedded, so we can't transition to any simple
state just yet.

x

delta

y v

u

We keep appending children to the right until one of the
chain runs out of nodes (or we encounter a node with
two children which would make this assignment invalid).

x

delta

y v

u

.

.

We keep appending children to the right until one of the
chain runs out of nodes (or we encounter a node with
two children which would make this assignment invalid).

x

delta

y v

u

.

.

.

.

We keep appending children to the right until one of the
chain runs out of nodes (or we encounter a node with
two children which would make this assignment invalid).

Once that happens, we can transition to state (f, 1).

x

delta

y v

u

.

.

.

.

f

There are O(N2) states, and it's possible to implement all
transitions in O(1) with some precomputation.

To speed it up, let's try to fix delta at 1, and see what
breaks.

The only case where we actually increase the delta is the
one where node x has one child assigned to the right
cell.

x y

Originally we would transition to state (y, 2), but what
kinds of embeddings would we miss if we transitioned to
(y, 1) instead?

x y

Originally we would transition to state (y, 2), but what
kinds of embeddings would we miss if we transitioned to
(y, 1) instead?

x y . z

. . . .

Originally we would transition to state (y, 2), but what
kinds of embeddings would we miss if we transitioned to
(y, 1) instead?

x y . z

. . . .

f

Originally we would transition to state (y, 2), but what
kinds of embeddings would we miss if we transitioned to
(y, 1) instead?

We need to identify the node z in the subtree, and assign
its neighbour, and verify that there is a chain of the right
size going back all the way in the other row.

x y . z

. . . .

f

We've reduced the number of states to O(N) and with
some careful programming and precomputation, all the
transitions can be done in O(1), so the overall complexity
is O(N).

