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Problem: Given a tree, count the number of ways to 
embed it in a 2 by N grid, such that two nodes connected 
by an edge are adjacent in the grid. Node 1 has to be in 
top-left cell.
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Problem: Given a tree, count the number of ways to 
embed it in a 2 by N grid, such that two nodes connected 
by an edge are adjacent in the grid. Node 1 has to be in 
top-left cell.
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Observation: When we root the tree at node 1, it has to 
be a binary tree. Otherwise, we have a node with degree 
greater than three, which can't be embedded.



Let's build a dynamic programming solution that 
enumerates all embeddings. We can describe the state 
as (x, delta).

At this state, we have embedded all nodes except for 
those in x's subtree. Node x is embedded at the last cell 
of the longer of the two rows, and the delta is the 
difference in length between the two rows.
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To make the transition, we'll try every possible 
assignment of node x's children to neighboring cells.

If assignment assigns a node y to a cell below x, we also 
try every possible assignment of y's children to 
neighboring cell.

Let's analyze possible outcomes of such assignments.
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Trivial case: x has no children. We've found one valid 
embedding.
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Node x has one child node y that was assigned to the 
right cell.
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Node x has one child node y that was assigned to the 
right cell.

We transition to state (y, delta + 1)
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Node x has one child node y that was assigned to the 
bottom cell. We also assign y's children to neighboring 
cells.
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Node x has one child node y that was assigned to the 
bottom cell. We also assign y's children to neighboring 
cells.

If it there is a child node z assigned to the left, we know 
that its subtree has form a simple chain of length up to 
(delta - 1). Otherwise we can't make a valid embedding 
from this assignment.
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Node x has one child node y that was assigned to the 
bottom cell. We also assign y's children to neighboring 
cells.

If it there is a child node v assigned to the right, we 
transition to state (v, 1).
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Node x has one child node y that was assigned to the 
bottom cell. We also assign y's children to neighboring 
cells.

If it there is a child node v assigned to the right, we 
transition to state (v, 1).
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In the general case, x has two children y and u, and y 
has a child v assigned to the lower right cell.

We now have two nodes, u and v, whose subtrees are 
not yet embedded, so we can't transition to any simple 
state just yet.
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We keep appending children to the right until one of the 
chain runs out of nodes (or we encounter a node with 
two children which would make this assignment invalid).
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We keep appending children to the right until one of the 
chain runs out of nodes (or we encounter a node with 
two children which would make this assignment invalid).
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We keep appending children to the right until one of the 
chain runs out of nodes (or we encounter a node with 
two children which would make this assignment invalid).

Once that happens, we can transition to state (f, 1).
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There are O(N2) states, and it's possible to implement all 
transitions in O(1) with some precomputation.

To speed it up, let's try to fix delta at 1, and see what 
breaks.

The only case where we actually increase the delta is the 
one where node x has one child assigned to the right 
cell.
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Originally we would transition to state (y, 2), but what 
kinds of embeddings would we miss if we transitioned to 
(y, 1) instead?
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Originally we would transition to state (y, 2), but what 
kinds of embeddings would we miss if we transitioned to 
(y, 1) instead?
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Originally we would transition to state (y, 2), but what 
kinds of embeddings would we miss if we transitioned to 
(y, 1) instead?
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Originally we would transition to state (y, 2), but what 
kinds of embeddings would we miss if we transitioned to 
(y, 1) instead?

We need to identify the node z in the subtree, and assign 
its neighbour, and verify that there is a chain of the right 
size going back all the way in the other row.
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We've reduced the number of states to O(N) and with 
some careful programming and precomputation, all the 
transitions can be done in O(1), so the overall complexity 
is O(N).


