Problem F Faulty Factorial

Submits: 229
Accepted: at least 32

First solved by: UW3
University of Warsaw
(Hołubowicz, Paluszek, Tabaszewski) 00:38:14

Author: Lovro Pužar

Faulty factorial: Take any factor of a factorial and make it smaller, but keep it positive.

Factorial:

$$
1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8
$$

Faulty factorial: $\quad 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 2 \cdot 7 \cdot 8$

Problem: Find any faulty factorial of length n that gives reminder r when divided by prime number p.

Case $\mathrm{r}=0$:
If $\mathrm{n}<\mathrm{p}$:
None of the factors is divisible by p : impossible.

Problem: Find any faulty factorial of length n that gives reminder r when divided by prime number p.

Case $\mathrm{r}=0$:
If $\mathrm{n}<\mathrm{p}$:
None of the factors is divisible by p : impossible.
Else:
The factorial is already divisible by p , just don't mess it up. Impossible when $n=p=2$.

Problem: Find any faulty factorial of length n that gives reminder r when divided by prime number p.

Case $\mathrm{r}>0$:
If $n>=2 p$:
Two factors divisible by p, we can't make both smaller: impossible.

Problem: Find any faulty factorial of length n that gives reminder r when divided by prime number p.

Case $\mathrm{r}>0$:
If $n>=2 p$:
Two factors divisible by p, we can't make both smaller: impossible.
Else if $n>=p$:
We need to change the factor p, if possible.

Problem: Find any faulty factorial of length n that gives reminder r when divided by prime number p.

Case $r>0$:
If $\mathrm{n}>=2 \mathrm{p}$:
Two factors divisible by p, we can't make both smaller: impossible.
Else if $n>=p$:
We need to change the factor p, if possible.
Else:
$n<p<=10000000$, so we can try each factor.

Problem: Find a faulty factorial of length $\mathrm{n}<\mathrm{p}$, with a fault at position i, that gives reminder $r>0$ when divided by prime number p.

We are looking for x such that:

$$
\mathrm{n}!/ \mathrm{i} \cdot \mathrm{x} \equiv \mathrm{r} \quad \text { (modulo } \mathrm{p})
$$

Problem: Find a faulty factorial of length $\mathrm{n}<\mathrm{p}$, with a fault at position i, that gives reminder $r>0$ when divided by prime number p.

We are looking for x such that:

$$
\begin{array}{ll}
\mathrm{n}!/ \mathrm{i} \cdot \mathrm{x} \equiv \mathrm{r} & (\text { modulo } \mathrm{p}) \\
\mathrm{x} \mathrm{\equiv r} \cdot \mathrm{i} / \mathrm{n}! & \text { (modulo } \mathrm{p})
\end{array}
$$

Problem: Find a faulty factorial of length $\mathrm{n}<\mathrm{p}$, with a fault at position i, that gives reminder $r>0$ when divided by prime number p.

We are looking for x such that:

$$
\begin{array}{ll}
\mathrm{n}!/ \mathrm{i} \cdot \mathrm{x} \equiv \mathrm{r} & \text { (modulo } \mathrm{p}) \\
\mathrm{x} \mathrm{\equiv r} \equiv \mathrm{i} / \mathrm{n}! & \text { (modulo } \mathrm{p}) \\
\mathrm{x} \equiv \mathrm{r} \cdot \mathrm{i} \cdot \mathrm{n}!^{-1} & \text { (modulo } \mathrm{p})
\end{array}
$$

Problem: Find a faulty factorial of length $\mathrm{n}<\mathrm{p}$, with a fault at position i, that gives reminder $r>0$ when divided by prime number p.

We are looking for x such that:

$$
\begin{array}{ll}
\mathrm{n}!/ \mathrm{i} \cdot \mathrm{x} \equiv \mathrm{r} & \text { (modulo } \mathrm{p}) \\
\mathrm{x} \equiv \mathrm{r} \cdot \mathrm{i} / \mathrm{n}! & \text { (modulo } \mathrm{p}) \\
\mathrm{x} \equiv \mathrm{r} \cdot \mathrm{i} \cdot \mathrm{n}!^{-1} & \text { (modulo } \mathrm{p}) \\
\mathrm{x} \equiv \mathrm{r} \cdot \mathrm{i} \cdot \mathrm{n}!^{p-2} & \text { (modulo } \mathrm{p})
\end{array}
$$

Compute x , and check whether $\mathrm{x}<\mathrm{i}$.

