
Problem I
Intrinsic Interval

Submits: 42
Accepted: at least 1

First solved by: Jagiellonian 1
Jagiellonian University in Krakow

(Hlembotskyi, Stokowacki, Zieliński)
02:10:47

Author: Gustav Matula

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

For a given subsequence we need to find the shortest
enclosing interval.

2 3 1 6 4 7 5 8

An interval of the permutation is a consecutive
subsequence consisting of consecutive numbers.

For a given subsequence we need to find the shortest
enclosing interval.

To see how we could expand the subsequence into the
shortest enclosing interval, let's visualize the permutation
in two dimensions.

With careful implementation of the algorithm, it is
possible to expand a subsequence [a, b] to an enclosing
interval [x, y] in O(|y - x| - |b - a|).

However, that's too slow for this problem.

Instead, we'll develop divide and conquer algorithm to
answer all queries at once.

We initialize the result for each query with interval [1, n]
and then we'll try to improve it.

Improve(queries, lo, hi) will try to improve each query in
queries by considering intervals completely within [lo, hi]
window.
Improve(queries, lo, hi):
 if lo == hi: return
 mid = (lo + hi) / 2
 Improve([q in queries where q.b <= mid], lo, mid)
 Improve([q in queries where q.a > mid], mid + 1, hi)
 ImproveViaMid(queries, lo, mid, hi)

ImproveViaMid considers all intervals that contain
[mid, mid + 1], and are within the [lo, hi] to improve
provided queries.

A query participates in O(log(N)) ImproveViaMid calls.

Starting from subsequence [mid, mid + 1], we expand it
to the left, storing all intervals we encounter until we exit
the [lo, hi] window.

lo=5 hi=24mid=14

lo=5 hi=24mid=14

Starting from subsequence [mid, mid + 1], we expand it
to the left, storing all intervals we encounter until we exit
the [lo, hi] window.

Left intervals: [12, 15]

lo=5 hi=24mid=14

Starting from subsequence [mid, mid + 1], we expand it
to the left, storing all intervals we encounter until we exit
the [lo, hi] window.

Left intervals: [12, 15], [8, 17]

lo=5 hi=24mid=14

Starting from subsequence [mid, mid + 1], we expand it
to the left, storing all intervals we encounter until we exit
the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we
expand it to the right, storing all intervals we encounter
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we
expand it to the right, storing all intervals we encounter
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15]

lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we
expand it to the right, storing all intervals we encounter
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17]

lo=5 hi=24mid=14

Again, starting from subsequence [mid, mid + 1], we
expand it to the right, storing all intervals we encounter
until we exit the [lo, hi] window.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]

lo=5 hi=24mid=14

Finally, for each query [a, b] we find the smallest left
interval that contains it and the smallest right interval that
contains it. The union of these two intervals is the
smallest interval within [lo, hi] that contains the query.

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]

lo=5 hi=24

We can implement ImproveViaMid(queries, lo, mid, hi) in
O(|hi - lo| + queries.size()), for overall complexity of
O((N + Q) log N).

mid=14

Left intervals: [12, 15], [8, 17], [6, 22]

Right intervals: [12, 15], [12, 17], [12, 22]

